Workshop of 3rd IRS, Oct. 23, 2017, Tehran, Iran

Lower Consumptions by Making Refractories Lighter

Ningsheng ZHOU

E-mail: nszhou@ 163.com

High Temperature Materials Institute, Henan University of Science and Technology, China

To learn about and understand:

- Why Necessities of making refractories lighter
- How Technological approaches to weight reduction
- What Practices and applications
 - □ Newly developed lightweight aggregates
 - □ New castables using new ideas
 - □ Some industrial trails

Prospects

Challenges that refractories are facing

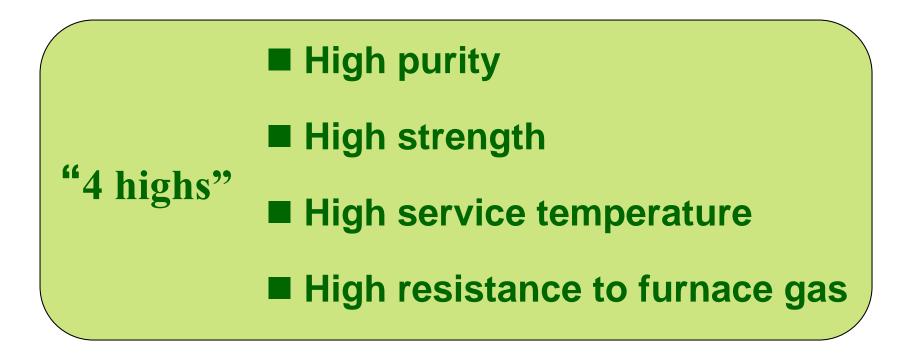
• Energy and resource shortages are calling for efforts to realize energy conservation and consumption reduction.

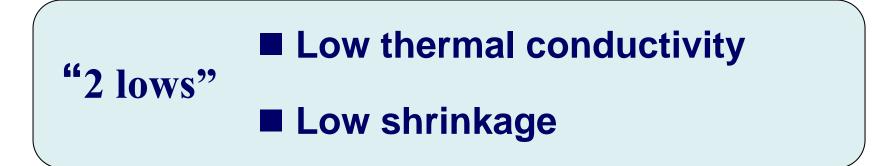
• Properly weight reducing is beneficial to thermal shock resistance and spalling resistance of refractory linings.

• Thermal insulating performance of refractory linings is challenged by energy saving and lower consumption of user industries.

• R & D and application of weightreduced refractories are drawing attentions and efferts.

The embodiment of "lightening"


Under the premise of safety and durability in service, to realize:


- **D** Reducing bulk density
- Reducing solid volume ratio in a specific total volume
- **D** Reducing lining thickness

How to make refractories lighter?

- □ Improvement and optimization in material system and microstructure
- □ Making aggregates lighter
- □ Inserting more pores in both aggregate portion and in matrix of refractories
- □ Lining structure optimization to avoid overweight
- More adoption of high performance lightweight bricks and monolithics

Requirements for high performance?

How to achieve high performance?

For LW aggregate: pore structure optimization \rightarrow high strength and low thermal conductivity.

Closed, micro-sized and spherical pores are suggested.

■ For material system: New material systems, e.g. Al₂O₃-SiO₂-CaO, MgO-SiO₂, MgO-Al₂O₃, Al₂O₃-CaO, etc..

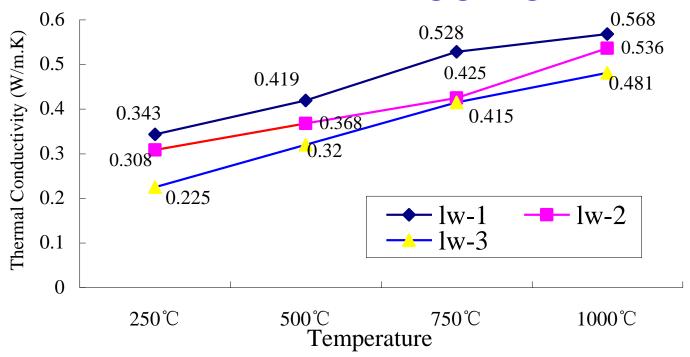
For property design: Better synergy of aggregate and matrix.

Why to micro-size pores in refractory aggregates?

- Pore size ↓ → convective heat transfer ↓ →
 therm. insulation ↑
- Spherical pore ↑ → convective and radiative
 heat transfer ↓ → thermal insulation ↑
- Closed pore →convective heat transfer ↓ →
 thermal insulation ↑
- Pore size $\downarrow \rightarrow$ strength \uparrow
- Pore size ↓ → chemical attack ↓

Three different lightweight aggregates

LW-1

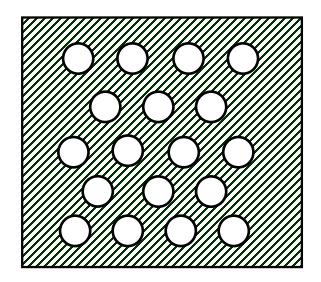

Prepared by using saw-ash as pore-maker BD/cm³ $Al_2O_3 \ge 60\%$ $Fe_2O_3 \le 2.0\%$ Prepared by using polypropylene balls as pore-maker BD/cm^3 $Al_2O_3 \ge 65\%$ $Fe_2O_3 \le 0.8\%$

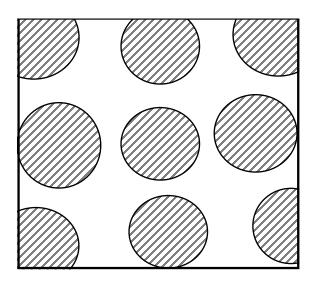
LW-2

LW-3

Micro-pored by special way BD/cm^3 $Al_2O_3 \ge 65\%$ $Fe_2O_3 \le 0.72\%$

Evidence of insulating advantage of micro-porous aggregate


Thermal conductivity of the three lightweight castables with different aggregates


BD of the three castables were controlled at ~1.5g/cm³

A theoretical analysis

on

Thermal conductivity in relationship with phase composition for a multi-phase material

(a)

Continuous dominant phase

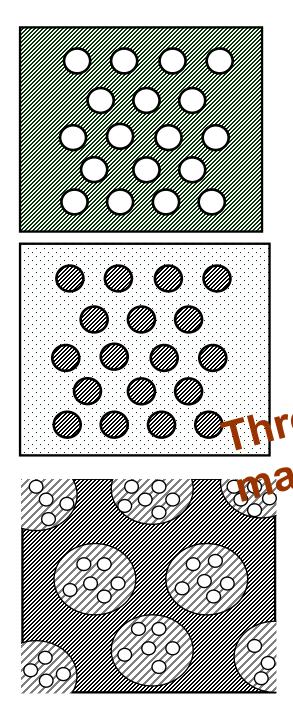
Discontinuous dominant phase

(b)

Two modes of two-phase model

The total thermal conductivity of a twophase material can be calculated by:

$$\lambda_{m} = \lambda_{0} \frac{1 + 2V_{d} \left(1 - \frac{\lambda_{0}}{\lambda_{d}}\right) / \left(\frac{2\lambda_{0}}{\lambda_{d}} + 1\right)}{1 - V_{d} \left(1 - \frac{\lambda_{0}}{\lambda_{d}}\right) / \left(\frac{\lambda_{0}}{\lambda_{d}} + 1\right)}$$

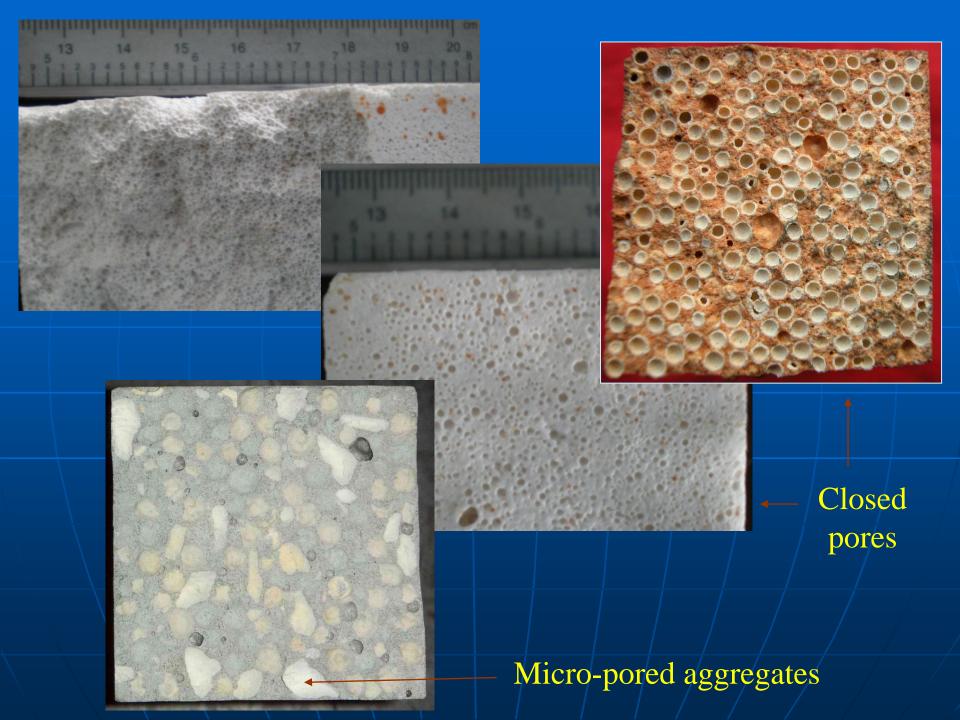

Where, V_d —volumetric percentage of the dispersed phase, % λ_0 — thermal conductivity of the continuous phase λ_d — thermal conductivity of the dispersed phase If $\lambda_0 >> \lambda_d$, the formula can be simplified as:

 $\lambda_m \approx \lambda_0 \, \frac{(1 - V_d)}{(1 + V_d)}$

It indicates that **increased** V_d leads to thermal conductivity \downarrow . If $\lambda_d >> \lambda_0$, the formula can be simplified as:

 $\lambda_m \approx \lambda_0 \frac{(1+2V_d)}{(1-V_d)}$

It indicates that **reduced** V_d leads to thermal conductivity \downarrow .

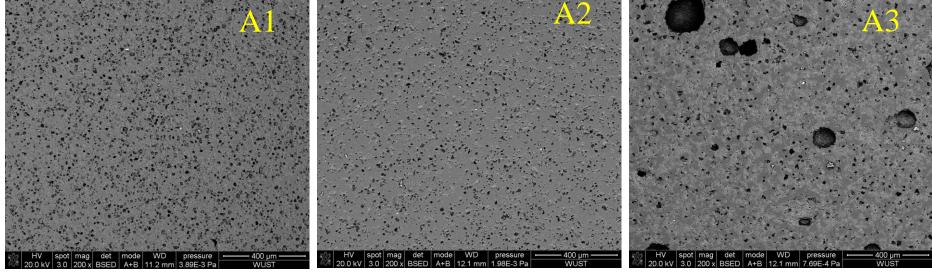

Dense matrix, hollow aggregates or big pores as dispersing phases

Type I

Dense aggregates, micropored matrix Type II Type II The approaches to ree approaches to lightweit castables Baking

Dense matrix, micropored aggregates

Type III

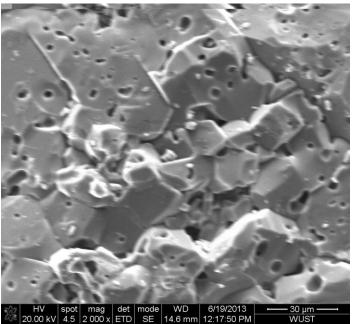

Newly developed weight reduced castables

- □ Micro-pored sintered alumina and its castables
- □ Micro-pored and hollow mullite based aggregates and their castables
- □ LW forsterite and MgO-SiO₂ LW castables
- □ Mullite and Al₂O₃-MgO LW pre-cast shapes
- □ LW CA₆-MA clinker and the Al₂O₃-CaO-MgO LW castables
- Multi-layer concept

Microporous sintered alumina (MSA)

Three kinds of MSA in comparison with conventional one (A_0)

Code	BD, g/cm ³	TD, g/cm ³	AP, %	Closed porosity, %
A ₀	3.63	3.94	2.8	5.0
$\mathbf{A_1}$	3.31	3.97	4.4	12.2
$\mathbf{A_2}$	3.47	3.96	3.9	8.4
$\mathbf{A_3}$	3.14	3.91	8.3	11.1
			A2	

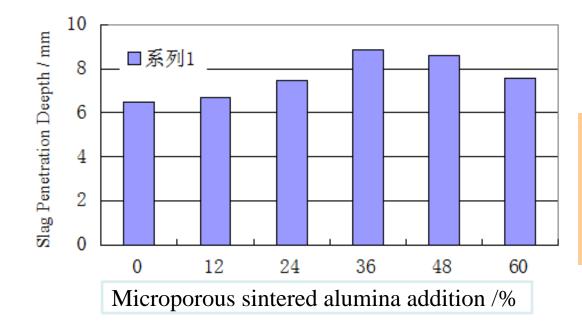

Thermal conductivity at 800°C (by laser flash method)

Specimen	$\mathbf{A_0}$	$\mathbf{A_1}$	\mathbf{A}_{2}	A_3
Т. С., W•(m•K) ⁻¹	11.13	6.47	8.36	9.05

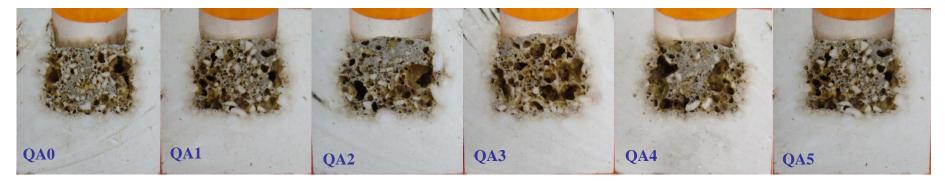
Thermal conductivity of the MSAs is less than that of the conventional one (A_0) , e.g., A_1 is reduced by ~42%, as compared to $A_{0.}$

Two types of sintered alumina

	BD /g/cm ³	Al ₂ O ₃ %	SiO ₂ %	Fe ₂ O ₃	Na ₂ O %
Conv. S.A.	3.55	99.15	0.11	0.12	0.34
MSA	3.42	99.05	0.14	0.12	0.37

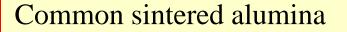

22

Microstructure of the industrialized MSA

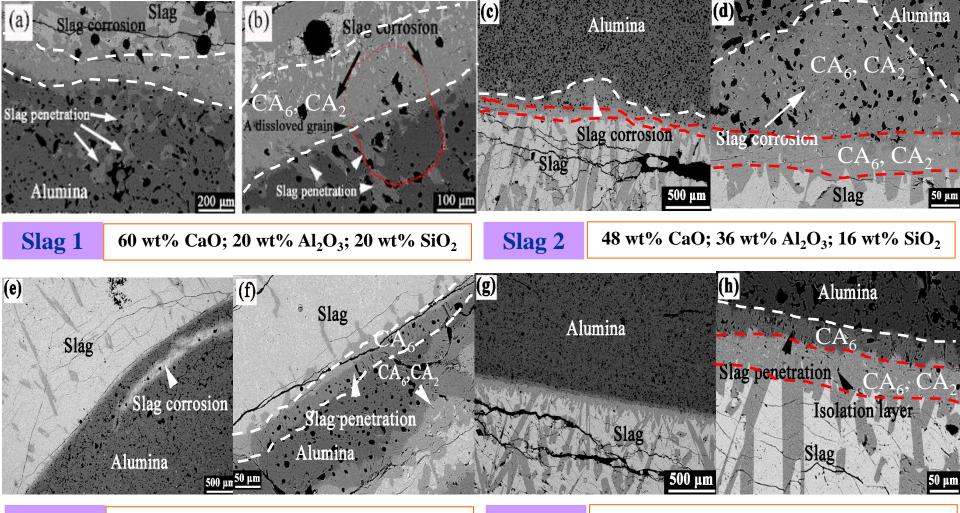

Experimental formula of Al₂O₃-Sp. Castables, %

Material	Size	Code					
		QA ₀	QA ₁	QA ₂	QA ₃	QA ₄	QA ₅
Conv. TA	10-0mm	60	48	36	24	12	0
	-320 mesh	8	8	8	8	8	8
Fused spinel	1-0mm	10	10	10	10	10	10
	-200 mesh	10	10	10	10	10	10
MSA	10-0mm	0	12	24	36	48	60
Untra-fine alumina powder		7	7	7	7	7	7
CA Cement		5	5	5	5	5	5

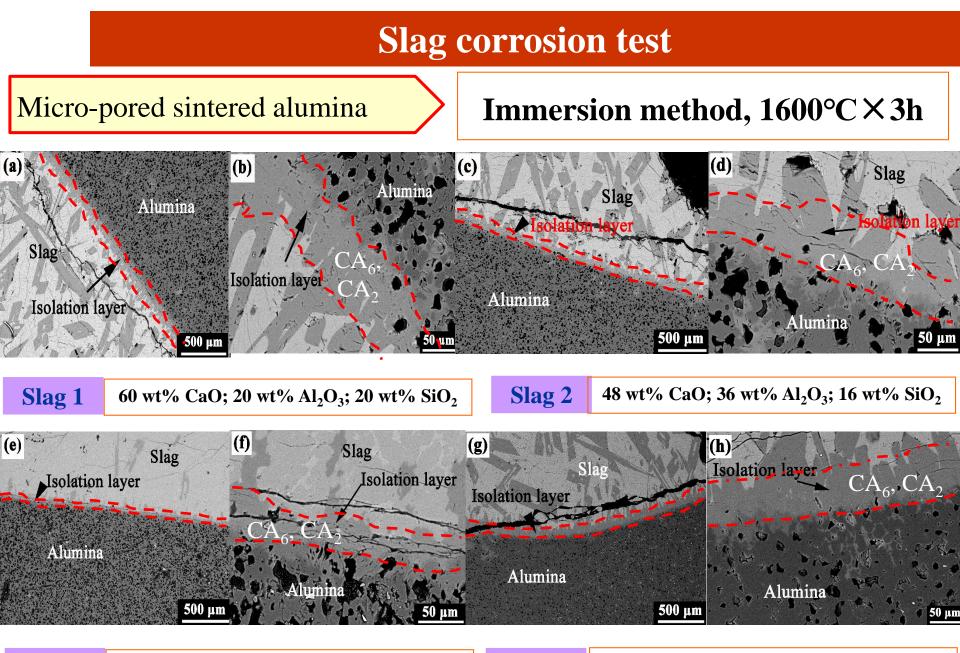
Slag resistance by crucible slag test



Increased MSA addition does not show significant negative influence on static slag resistance.

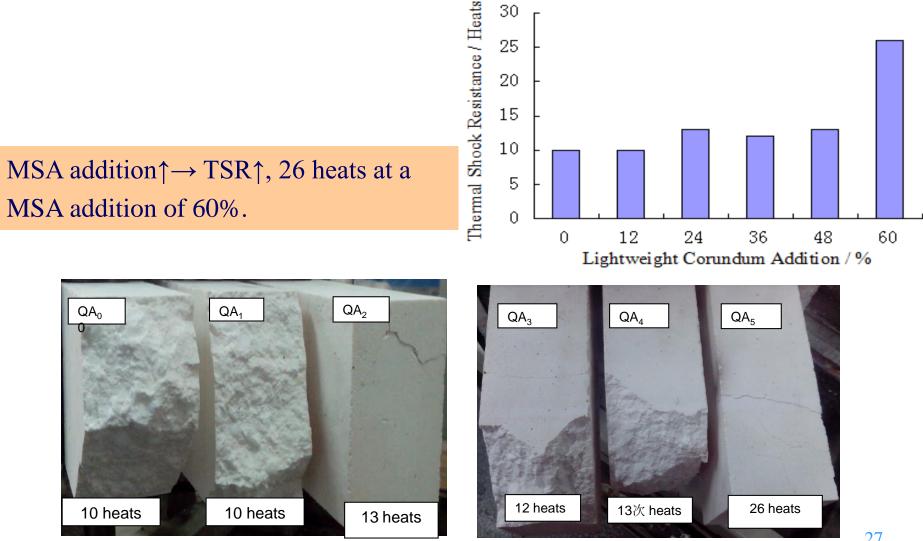


The influence of MSA addition on slag resistance 24



Immersion method, 1600°C×3h

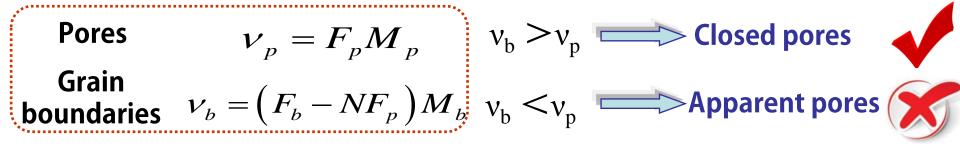
Slag 3 55 wt% CaO; 42 wt% Al₂O₃; 3 wt% SiO₂

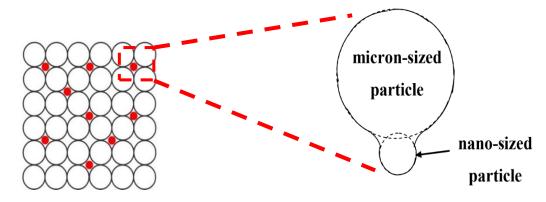

Slag 4 72 wt% CaO; 4 wt% Al₂O₃; 24 wt% SiO₂

Slag 3 55 wt% CaO; 42 wt% Al₂O₃; 3 wt% SiO₂

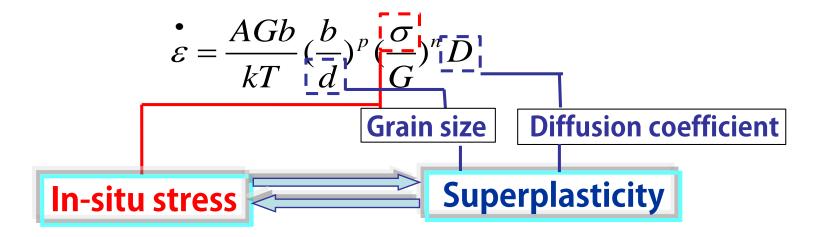
Slag 4 72 wt% CaO; 4 wt% Al₂O₃; 24 wt% SiO₂

TSR comparison by water quenching

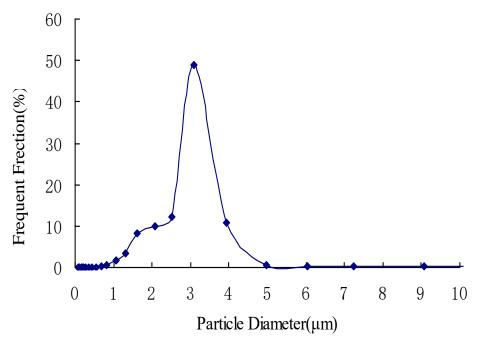


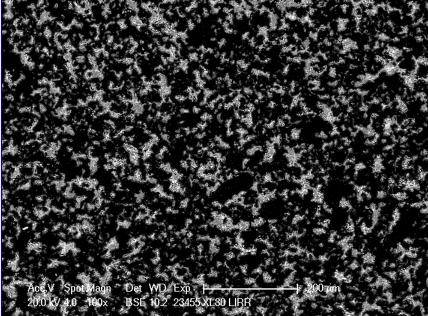

Advantages of Microporous sintered alumina

The following advantages can be provided by using MSA to partially or completely replace conventional sintered alumina aggregates:


- Reduced thermal conductivity, contributive to insulating and energy saving
- Reduced material consumption, helpful to lighten refractory linings
- No degradation in strength and resistance to corrosive media attack, due to enhanced grain-matrix bonding.
- Significantly improved thermal shock resistance.

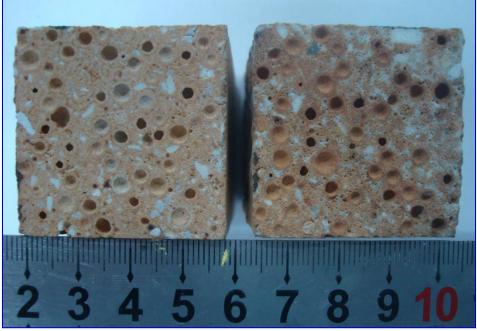
Fabrication principle


Superplasticity is defined as the ability of a material to exhibit substantially large elongation under stress. Furthermore, superplastic materials deform by means of **grain boundary sliding.**

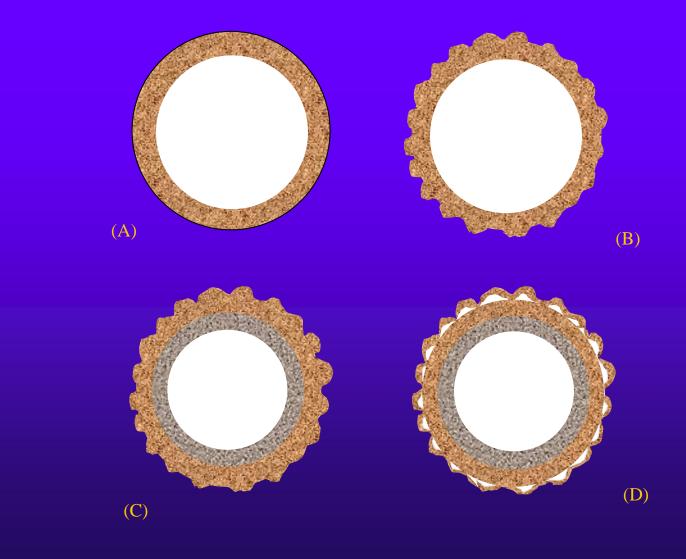

Newly developed weight reduced castables

- □ Micro-pored sintered alumina and its castables
- Micro-pored and hollow mullite based aggregates and their castables
- □ LW forsterite and MgO-SiO₂ LW castables
- □ Mullite and Al₂O₃-MgO LW pre-cast shapes
- □ LW CA₆-MA clinker and the Al₂O₃-CaO-MgO LW castables
- Multi-layer concept

Micro-pored mullite


70% Al₂O₃ content
AP above 50%
BD under 1.2g/cm³

Micro-pored mullite castables


Combined utilization of two LW aggregates

Featured by low thermal conductivity

■ Micro-pored mullite + MHB → low TC + high strength ₃₂

Hollow spherical aggregates

Mullite hollow ball (MHB)

	Al ₂ O ₃ content	55 - 60 %
	K ₂ O+Na ₂ O content	≤1.0%
	Stacking density	0.68 - 0.76 g/cm ³
	Refractoriness	≥1770°C
	Cylinder compressive strength	2.2 - 2.8 MPa
5 6 7 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Size in diameter	3 - 8mm
	Wall thickness	0.5 - 3 mm

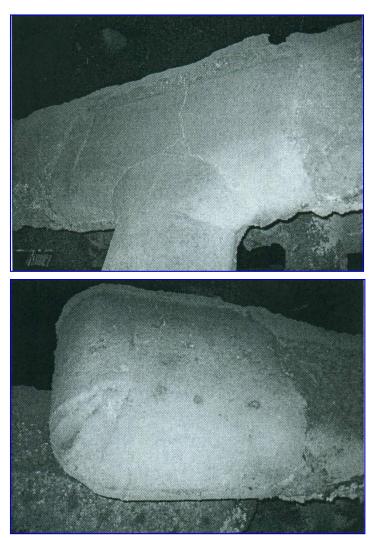
Hard shell and hollow core.

Sizes: Φ3mm, Φ5mm and Φ8mm.

LW castables using MHB as aggregates

- Lightweight
- **High strength**
- Service temp. can go up to **1450°C**

Andalusite Addition /%


LW castables for water cooled skid and post lining of stepping beam reheating furnace at BaoSteel

After installation

After 9 month service

MHB LW castables for annular heating furnace in Maanshan Steel

Wheels of steel rolling heating furnace with an outer diameter of 28m and an inner diameter of 24m.

■ Installed in Aug 2011 by a LW castable with BD of 1.8g/cm³.

Metal Magnesium Reduction Furnace

Pre-cast LW burners

Other applications

Properties of the LW vs. dense castable for ladle back lining

		Micro-pored LW castables	Dense castables
DD . /3	110℃×24h	1.6~1.8	2.7~2.8
BD, g/cm ³	1450℃×3h	1.6~1.8	2.7~2.8
PLC,%	1450℃×3h	-0.04	-0.06
	110℃×24h	>20	>25
CCS, MPa	1450℃×3h	>40	>60
	110℃×24h	>4	>4
CMOR, MPa	1450℃×3h	>8	>8
Thermal conductivity, W/m.K	800° ℃	0.65	0.98

Use effect of the LW castable as ladle back lining in two steel plants

		48t and 80t ladles at Xingtai Steel	160t Ladles at Benxi Steel	
	Bottom	MgO-C bricks, 300mm thick	MgO-C bricks, 320mm thick	
	Wall	MgO-C bricks, 170mm thick	Low carbon bricks, 150~180mm thick	
	Slag line	MgO-C bricks, 200mm thick	MgO-C bricks, 160mm thick	
Ladle	Wall back	Micro-pored LW castables,	Micro-pored LW castables,	
configuration	lining	85mm in thickness	90mm in thickness	
and service	Average shell temperature	200~230 °C.	180~220 °C.	
condition		80~100℃ lower than that by using	50~80°C lower than that by using	
		dense ca <i>s</i> tables	dense castables	
	Tapping	1600 °C.	1600∼1630 °C.	
	temperature	Reduced by 15~20℃	Reduced by about 15 $^{\circ}\!\mathrm{C}$	
	Refining way	LF, 100%	LF, RH	

Lightweight mullite based sintered clinker

Comparison of two types of mullite based sintered clinker

	Al ₂ O _{3,} %	Fe ₂ O _{3,} %	BD, g/cm ³	AP, %	WA, %	$K_2O + Na_2O, \%$
CM45	46.66	0.73	2.56	3.3	1.27	0.23 + 0.12
LM45	46.79	0.71	2.18	18.4	8.44	0.26 + 0.13

Comparison of two castables using different aggregates

	Al ₂ O _{3,} %	Fe ₂ O ₃ , %		BD, g/cm ³	T.C., W/m.K (Hot face temp.: 1000℃)	· · · · ·	,
СМ	50.86	0.85	16.8	2.36	1.12	89	1426
LM	50.99	0.86	22.9	2.14	0.76	83	1455

Newly developed weight reduced castables

- □ Micro-pored sintered alumina and its castables
- □ Micro-pored and hollow mullite based aggregates and their castables
- □ LW forsterite and MgO-SiO₂ LW castables
- □ Mullite and Al₂O₃-MgO LW pre-cast shapes
- □ LW CA₆-MA clinker and the Al₂O₃-CaO-MgO LW castables
- Multi-layer concept

LW forsterite and MgO-SiO₂ LW castables

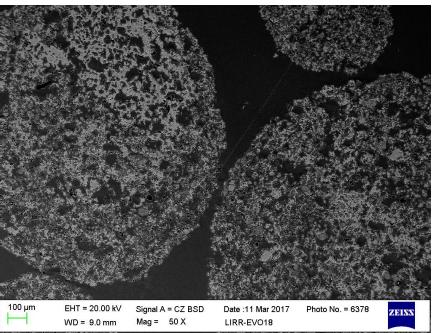
Basic LW castables

Higher service temp.

Good resistance to furnace gas

Rich resources

LW and semi-LW MgO-SiO₂ castables


		1#	2#
BD of the adopted aggregates, g/cm ³		~1.4	~1.8
BD, g/cm ³	1400°C×3h	1.90	2.14
PLC, %	1400°C×3h	-0.07	+0.7
CMOR, MPa	1400 °C \times 3h	3.9	5.7
CCS, MPa	1400 °C ×3h	23	35.95

Forsterite based porous spheres

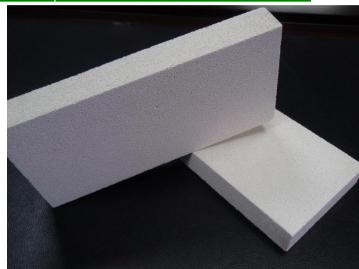
Synthesized porous forsterite balls with sizes 2-5mm

Section of porous forsterite balls by SEM observation

Newly developed weight reduced castables

- □ Micro-pored sintered alumina and its castables
- □ Micro-pored and hollow mullite based aggregates and their castables
- □ LW forsterite and MgO-SiO₂ LW castables
- □ Mullite and Al₂O₃-MgO LW pre-cast shapes
- □ LW CA₆-MA clinker and the Al₂O₃-CaO-MgO LW castables
- Multi-layer concept

Pore sizes: under 1mm Thickness: 18-25mm


Mullite based close-pored insulating boards

1030500			RF-IBAM	RF-IBBM	RF-IBCM
101 Act 6		Al ₂ O ₃	72.28	71.56	50.82
変換のな	Chem. comp., %	SiO ₂	26.68	21.57	43.05
		Fe ₂ O ₃	0.13	1.35	0.86
No.		TiO ₂	0.08	1.69	0.48
	BD, g/cm ³		1.05	0.98	0.92
CCS, MPa		18	15	13	
	PLC, % (1400°C, 3h)		-1.18	+0.28	-0.46
Thermal conductivity, W/m⋅K at 800°C on hot face		0.612	0.416	0.294	

LW pre-cast shapes in Al₂O₃-MgO system

	Testing condition	Measured data
Chemical composition, %	Al ₂ O ₃ +MgO	89.56
BD, g/cm ³	110°C×24h	1.53
CMOR, MPa	1500 °C×3h	8.7
CCS, MPa	1500 °C×3h	43.6
PLC, %	1500 °C×3h	+0.56
HMOR, MPa	1400 °C×1h	0.15
Thermal conductivity,	700°C (Average T)	0.704
W/MK	900°C (Average T)	0.790

- Service temperatures up to 1600°C
- Closed pore structure
- Suitable for high temp. back linings

Newly developed weight reduced castables

- □ Micro-pored sintered alumina and its castables
- □ Micro-pored and hollow mullite based aggregates and their castables
- □ LW forsterite and MgO-SiO₂ LW castables
- □ Mullite and Al₂O₃-MgO LW pre-cast shapes
- □ LW CA₆-MA clinker and the Al₂O₃-CaO-MgO LW castables
- □ Multi-layer concept

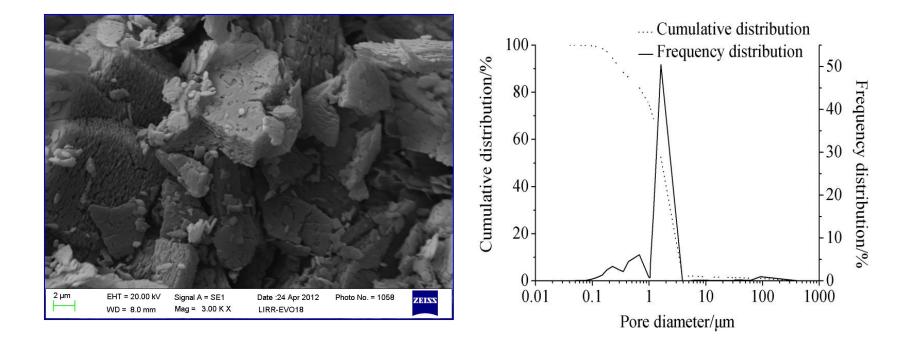
Features of CA₆, MA spinel & corundum

 CA_6

mp. 1860°C

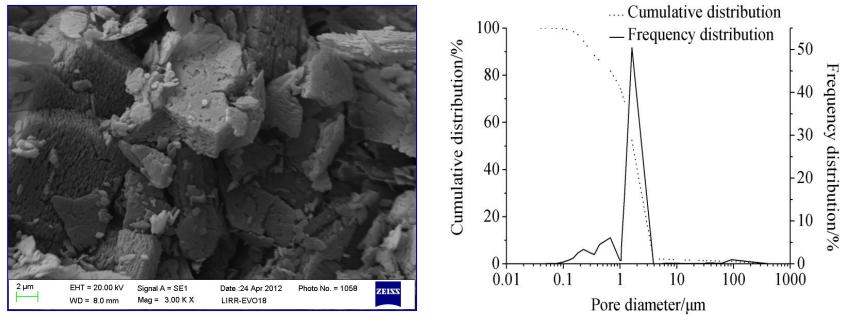
- Therm. coef. 8.0×10⁻⁶ °C⁻¹
- Good stability in reducing atmosphere
- Good resistance to alkali

Theo. density 3.38g/cm³


MA

mp. 2135°C Therm. coef. 8.9×10⁻⁶ °C⁻¹ Good stability both in oxygen and in reducing atmosphere Good resistant to chem. attack Theo. density 3.58g/cm³

Corundum


mp. 2050 °C, therm. coef. 8.0×10⁻⁶ °C⁻¹, good chemical stability

Microstructure and pore size distribution of porous CA₆-MA

Phase composition: $\sim 70\%$ CA₆, $\sim 30\%$ MA

Microstructure and pore size distribution of CA₆-MA aggregate

Properties of Al₂O₃-CaO-MgO LW castables

1600°C×3h	1.48
1600°C×3h	60
1600°C×3h	+1.30
1600°C×3h	5.2
1600°C×3h	14.0
1400°C×0.5h	1.2
1000°C at hot face	0.38
	1600°C×3h 1600°C×3h 1600°C×3h 1600°C×3h 1400°C×0.5h

Newly developed weight reduced castables

- □ Micro-pored sintered alumina and its castables
- □ Micro-pored and hollow mullite based aggregates and their castables
- □ LW forsterite and MgO-SiO₂ LW castables
- □ Mullite and Al₂O₃-MgO LW pre-cast shapes
- □ LW CA₆-MA clinker and the Al₂O₃-CaO-MgO LW castables
- □ Multi-layer concept

Micro-pored mullite and its pre-cast blocks

QM45-1.8 Micro-pored mullite

Pre-cast block with combination of dense and LW castables

Application: back lining of tin bath bottom in glass industry

Two-layer brick for hot metal ladle lining

Multi-layer brick for cement kiln

Concluding remarks — meaningfulness and prospets

■ The development and application of weight reduced refractories can play an important role in energy saving and material consumption reduction for refractory linings. Experience sharing and application promotion are necessary to achieve lower consumptions.

The relationship between pore structure and comprehensive properties of products is worth of careful investigation so that overall compromising various properties can be realized.

Concluding remarks — meaningfulness and prospects

■ It is not always reasonable and necessary to achieve "the lighter, the better". Lightweight concept and approaches to high performance can also be applied to dense refractories in favor of lowering energy and material consumptions.

■ More available sources, better qualities and more competitive prices must be achieved during the preparation, optimization of new lightened aggregates and the manufacture and application of the related lightened products for increasing acceptance and adoption of them.

Thanks for your attention