۲۰۲۲ - سال بین‌المللی شیشه

 | تاریخ ارسال: 1400/12/14 | 
بسیار واضح است که این روزها در همه جا شیشه می­بینیم.
شیشه ما را تحریک می‌کند که بیشتر و بیشتر به آن نگاه کنیم تا به کارهای مهمی که انجام می‌دهد توجه کنیم. شیشه بسیاری از جنبه­ های حیاتی زندگی ما را ممکن می­سازد و آگاهی از نقشی که ایفا می­کند هرگز بیشتر از این نبوده ­است. شیشه زندگی ما را آسان­ تر، ایمن­ تر، سریع­ تر و بهتر می­کند. همچنین می­تواند دنیای رنگین­ تری را ایجاد کند. شیشه در حال تبدیل شدن به یک کالای داغ است.
بنابراین انتخاب سال ۲۰۲۲ به عنوان سال بین­ المللی شیشه توسط مجمع عمومی سازمان ملل متحد (سازمان ملل)، مناسب است.
البته در موزه شیشه کورنینگ، در ۷۰ سال گذشته شیشه را جشن می‌گیریم؛ بنابراین دیدن شیشه به عنوان ماده ­ای باورنکردنی و همه‌کاره، برای ما تعجب‌آور نیست. این یک ماده باستانی است اما همچنان قدرت و پتانسیل را برای دنیایی که امروز در آن زندگی می­کنیم به ارمغان می ­آورد. شیشه و دمیدن شیشه، راه­ هایی برای اتصال ما به قرن­ها سنت، نوآوری و همچنین دروازه ­هایی به سوی آینده و امکانات بی پایانِ در انتظار هستند.
کمپینی برای به رسمیت شناختن شیشه توسط سازمان ملل متحد برای اولین بار توسط کمیسیون بین المللی شیشه در سال ۲۰۱۸ پیشنهاد شد و به زودی پس از آن سرعت گرفت. هنگامی که این ایده به موزه شیشه کورنینگ ارائه شد، به طور کامل توسط رهبری و کارکنان موزه مورد استقبال قرار گرفت و توسط استیو گیبز، مدیر ارشد بازنشسته، توسعه تجارت/فناوری شیشه داغ که در پیشبرد این تلاش در بین المللی نقش داشت، حمایت شد. انجمن هنر شیشه این نام­گذاری رسمی توسط سازمان ملل در سال ۲۰۲۲ را به عنوان سال بین­ المللی شیشه، صحنه ­ای را برای جشن گرفتن یکی از متحول­ کننده­ ترین و باستانی­ ترین مواد ساخته شده از شن و ماسه در جهان فراهم می­کند. شیشه شفاف، بادوام و دارای توانایی انتقال نور است که مانند هیچ ماده­ ی دیگر شناخته شده توسط بشر نیست. برای هزاران سال، شیشه جهان ما را از اختراع بطری به لامپ شکل داده و تبدیل کرده و عصر اطلاعات را فعال کرده­ است؛ زیرا ما اکنون با سرعت نور از طریق شیشه با هم ارتباط برقرار می­کنیم. به ما بپیوندید تا سال بین­ المللی شیشه را جشن بگیریم، زیرا جهان در عصر شیشه وارد آینده­ ی ما می­شود.
علیرغم تاخیرهای ناشی از همه­ گیری جهانی کووید-۱۹، مجمع عمومی سازمان ملل متحد برای تصویب قطعنامه­ ای در ۱۸ می ۲۰۲۱ تشکیل جلسه داد. این قطعنامه اذعان دارد که شیشه برای قرن­ها بشر را همراهی کرده ­است و کیفیت زندگی میلیون­ ها نفر را غنی می­کند. به عنوان یکی از مهم‌ترین، همه‌کاره‌ترین و متحول‌کننده‌ترین مواد تاریخ، شیشه جزء مهمی در بسیاری از زمینه‌ها از جمله در بخش هوافضا و خودروسازی، معماری، هنر، اطلاعات و ارتباطات، انرژی و سلامت است.
ما امسال، سال آینده و هر سال به جشن شیشه ادامه خواهیم داد.
منبع:                               
https://blog.cmog.org/۲۰۲۱/۰۷/۲۰/۲۰۲۲-the-international-year-of-glass/

نویسندگان:دکتر آدرینه ملک خاچاطوریان-مهندس ریحانه گودرزی

حس کردن و تصویربرداری برتر در مقیاس نانو با پروب های بهینه شده ی الماس

 | تاریخ ارسال: 1400/12/14 | 
از کشف میکروارگانیسم­ ها در زمینه زیست ­شناسی گرفته تا تصویربرداری از اتم ­ها در زمینه فیزیک، تصویربرداری میکروسکوپی درک ما از جهان را بهبود بخشیده ­است و باعث پیشرفت­ های علمی بسیاری شده ­است. اکنون، با ظهور spintronics و دستگاه‌های مغناطیسی مینیاتوری، نیاز روزافزونی به تصویربرداری در مقیاس نانومتری برای تشخیص ویژگی‌های کوانتومی ماده، مانند اسپین‌های الکترون، ساختار حوزه مغناطیسی در فرومغناطیس‌ها، و پیچ‌های (vortices) مغناطیسی در ابررساناها وجود دارد.
به طور معمول، این کار با تکمیل تکنیک‌های میکروسکوپ استاندارد، مانند میکروسکوپ تونلی روبشی و میکروسکوپ نیروی اتمی (AFM)، با حسگرهای مغناطیسی برای ایجاد «پروب­های مغناطیس‌سنجی روبشی» که می‌توانند به حس ­کردن و تصویربرداری در مقیاس نانو دست یابند، انجام می‌شود. با این حال، این پروب­ ها اغلب به شرایط خلاء فوق‌العاده بالا، دماهای بسیار پایین نیاز دارند و از نظر تفکیک مکانی به دلیل اندازه ­ی پروب، محدود هستند.
در این راستا، مراکز خالی نیتروژن (NV) در الماس (نقص در ساختار الماس تشکیل شده توسط اتم­های نیتروژن در مجاورت "جای خالی" ایجاد شده توسط اتم­های از دست رفته) توجه قابل توجهی به دست آورده­ اند. جفت NV را می­توان با AFM ترکیب کرد تا تصویربرداری مغناطیسی محلی را انجام دهد و می­تواند در دما و فشار اتاق کار کند. با این حال، ساخت این پروب‌ها شامل تکنیک‌های پیچیده‌ای است که امکان کنترل زیادی بر شکل و اندازه پروب را نمی‌دهد.
 در یک مطالعه جدید که توسط دانشیار Toshu An از مؤسسه علوم و فناوری پیشرفته ژاپن (JAIST) و Yuta Kainuma، دانشجوی دکتری JAIST، با همکاری پژوهشگران دانشگاه Kyoto، ژاپن، و موسسه ملی علوم و فناوری صنعتی پیشرفته ژاپن انجام گرفت، به این موضوع پرداختند و پروب­ های الماس میزبان NV را با استفاده از یک روش جدید ترکیبی از برش لیزر و پرتو یون متمرکز (FIB) ساختند که هم درجه بالایی از آزادی فرآوری و هم کنترل بر شکل پروب را امکان­ پذیر می­کند. این مقاله در مجله Applied Physics منتشر شده ­است.
 برای شروع، این تیم مراکز N-V را در الماس بالک با کاشت یون­ های نیتروژن در آن ایجاد کردند. سپس سطح مقابل را صیقل دادند و چندین قطعه میله­ ای شکل را با برش لیزری تولید کردند. آن­ها یکی از میله­ های الماس را به نوک یک پروب AFM وصل کردند و از فرآوری FIB برای تبدیل سطح جلوی میله الماس به شکل نهایی پروب استفاده کردند. از یون‌های گالیوم برای شکل دادن به پروب در روش FIB  استفاده می‌­شود. با این حال، این یون‌ها می‌توانند جای خالی در ساختار الماس ایجاد کنند و حالت شارژ در عیب NV را تغییر دهند. برای جلوگیری از هر گونه آسیب به مرکز NV، ما از یک الگوی آسیاب دونات شکل در اطراف مرکز پروب استفاده کردیم. پروب نهایی یک میکروستون متشکل از ۱۰۳ مرکز NV با قطر ۳/۱ میکرومتر و طول ۶ میکرومتر بود.
با استفاده از این پروب، این گروه از ساختار دامنه مغناطیسی دوره­ای در یک نوار مغناطیسی تصویربرداری کردند. دکتر An توضیح می‌دهد: "ما میدان‌های مغناطیسی سرگردان را از ساختار حوزه مغناطیسی با نقشه ­برداری شدت فوتولومینسانس در یک فرکانس ثابت مایکروویو و فرکانس‌های تشدید در طیف‌های تشدید مغناطیسی تشخیص‌داده‌شده نوری تصویر کردیم. این تیم خوشبین است که روش ساخت جدید، کاربرد پروب­های تصویربرداری کوانتومی را گسترش دهد. در سال­ های اخیر، توسعه دستگاه­ های جدید برای حل مشکلات زیست محیطی و انرژی و تحقق شکوفایی پایدار جامعه بشری مورد کاوش بوده ­اند. انتظار می­رود فناوری اندازه ­گیری و سنجش کوانتومی، سیستمی را که زیرساخت­های اجتماعی را پشتیبانی می­کند، در آینده اصلاح کند. از این نظر، تکنیک ساخت ما می‌تواند به افزایش تلاش‌ها برای تحقق تصویربرداری کوانتومی در مقیاس نانو کمک کند.
منبع:

https://nano-magazine.com/news/۲۰۲۲/۱/۱۴/toward-superior-nanoscale-sensing-and-imaging-with-optimized-diamond-probes
نویسندگان:دکتر آدرینه ملک خاچاطوریان-مهندس ریحانه گودرزی

گرافن می تواند جایگزین فلز کمیاب مورد استفاده در صفحه نمایش تلفن همراه شود

 | تاریخ ارسال: 1400/10/27 | 
گرافن می تواند جایگزین فلز کمیاب مورد استفاده در صفحه نمایش تلفن همراه شود
پژوهشگران دانشگاه Paragraf و Queen Mary لندن، ساخت موفقیت‌آمیز یک دیود ساطع­ کننده­ ی نور آلی (OLED) را با یک آند گرافن تک لایه به عنوان جایگزین ITO در دیودهای ساطع ­کننده نور آلی نشان دادند. این مطالعه جدید در مجله Advanced Optical Materials منتشر شده است.
ایندیوم یکی از ۹ عنصر کمیاب در پوسته زمین است و در فهرست مواد حیاتی اتحادیه اروپا قرار دارد. با این حال، بیشتر به شکل اکسید قلع ایندیوم (ITO) و بخش کلیدی صفحه نمایش لمسی در تلفن­های همراه و رایانه­ های ما به طور گسترده استفاده می­ شود. اکثر خانه­ ها دارای اقلام زیادی حاوی ایندیوم هستند، از آن در تلویزیون­ های صفحه تخت، پنل­ های خورشیدی و همچنین چراغ­های LED در خانه­ ها استفاده می شود.
این پژوهش نوآور با بودجه انگلستان راه را به روی تغییر اساسی در آینده بر پتانسیل دستگاه­های با فناوری پیشرفته با حذف عنصر محدودکننده­ ی ایندیوم باز می­کند.
پروفسور Colin Humphreys از Paragraf و Queen Mary می­ گوید: "به دلیل اهمیت و کمیاب بودن، تلاش­های زیادی برای جایگزینی ITO صورت گرفته است؛ اما تاکنون هیچ ماده­ ای یافت نشده ­است که عملکرد مشابهی در یک دستگاه الکترونیکی یا نوری داشته باشد. "
مقاله­ ی ما، اولین مقاله در جهان است که نشان می‌دهد گرافن می‌تواند جایگزین ITO در یک دستگاه الکترونیکی-اپتیکی شود. ما نشان داده‌ایم که یک گرافن-OLED  عملکرد یکسانی با یک ITO-OLED دارد ITO-OLED .به طور گسترده به عنوان صفحه لمسی در تلفن­های همراه مان استفاده می‌شود.
گرافن یک لایه منفرد از اتم­های کربن است. کربن در زمین بسیار فراوان است و برخلاف ایندیوم یک ماده پایدار است.
هنگامی که گرافن به شکل پولک­ های کوچک کشف شد، به دلیل خواص فوق­ العاده­، ماده شگفت انگیز نامیده شد. با این حال، سازمان­هایی مانند IBM، اینتل و سامسونگ نتوانسته­ اند رشد گرافن را افزایش دهند تا بتوان از آن در دستگاه ­های الکترونیکی استفاده کرد. Paragraf روش جدیدی را برای تولید گرافن با سطح بزرگ و مناسب برای چنین دستگاه­ هایی ایجاد کرده­ است.
منبع:
https://nano-magazine.com/news/۲۰۲۲/۱/۱۰/graphene-could-replace-rare-metal-used-in-mobile-phone-screens
نویسندگان:دکتر آدرینه ملک خاچاطوریان-مهندس ریحانه گودرزی

کنفرانس بین المللی سرامیک های پیشرفته و کامپوزیت ها

 | تاریخ ارسال: 1400/10/18 | 
کنفرانس بین ­المللی سرامیک­های پیشرفته و کامپوزیت­ ها
 
چهل و ششمین کنفرانس و نمایشگاه بین­ المللی سرامیک و کامپوزیت­ های پیشرفته (ICACC'22) از 23 تا 28 ژانویه 2022 در ساحل Daytona، فلوریدا برگزار خواهد شد. این کنفرانس دارای سابقه قوی در برگزاری برترین نشست بین ­المللی در مورد سرامیک­های ساختاری و کاربردی پیشرفته، کامپوزیت­ ها و همچنین سایر مواد و فناوری­ های سرامیکی در حال ظهور است. بخش مهندسی سرامیک (ECD) انجمن سرامیک آمریکا، این رویداد را از سال 1977 سازماندهی کرده است. به دلیل کیفیت بالای ارائه­ های فنی و فرصت­های تعامل منحصر به فرد، این رویداد مورد توجه جهانی قرار گرفته و مشارکت فعال پژوهشگران و توسعه­ دهندگان سرامیک را از طرف جامعه فنی جهانی به لطف تعهد و حمایت اعضای ما به خود جلب کرده­ است.
این برنامه دارای 18 نشست، پنج جلسه متمرکز، یک جلسه متمرکز ویژه در زمینه تنوع، کارآفرینی و تجاری­ سازی و همچنین یازدهمین مجمع جهانی پژوهشگران جوان است. این جلسات فنی، متشکل از هر دو ارائه­ های شفاهی و پوستری است که یک انجمن آزاد برای دانشمندان، پژوهشگران و مهندسان از سراسر جهان برای ارائه و تبادل یافته­ ها در مورد پیشرفت­های اخیر در جنبه­ های مختلف مرتبط با علم و فناوری سرامیک را فراهم می­کند.
 
 
منبع:

https://ceramics.org/event/46th-international-conference-and-expo-on-advanced-ceramics-and-composites
گردآورندگان:دکتر آدرینه ملک خاچاطوریان-مهندس ریحانه گوذرزی

کنفرانس الکتروسرامیک ۲۰۲۲

 | تاریخ ارسال: 1400/10/14 | 
کنفرانس الکتروسرامیک ۲۰۲۲
مجموعه کنفرانس‌های دوسالانه­ی Electroceramics در اواخر دهه ۱۹۸۰ تأسیس شد و یکی از بسترهای بین‌المللی مرکزی برای پژوهشگران دانشگاهی و صنعتی برای بحث و تبادل نظر در مورد پیشرفت‌ها، اکتشافات و روندهای نوظهور در زمینه مواد الکتروسرامیک و کاربردهای آن است.
از اولین ویرایش، مجموعه کنفرانس­های الکتروسرامیک بر جنبه­ها و موضوعات مختلف مواد الکتروسرامیک، به صورت تک و چند بلوری بالک و همچنین به صورت لایه­های نازک یا ضخیم متمرکز شده­است. بنابراین ایده­ی شبکه­ی الکتروسرامیک، گرد هم آوریِ دانشگاهیان و پژوهشگران صنعتی، دانشمندان جوان و دانشجویان دکتری، به منظور تبادل و به اشتراک گذاشتن نتایج جدید و نوآورانه در تمام جنبه‌های الکتروسرامیک است.
از سال ۲۰۱۶، کنفرانس­های الکتروسرامیک توسط ECerS برگزار می­شود.
کنفرانس بعدی الکتروسرامیک با عنوان Electroceramics XVIII از ۱۰ الی ۱۴ جولای سال ۲۰۲۲ در کراکوف لهستان، به طور مشترک با کنفرانس­های ECerS XVII و ICC۹ سازمان­دهی می­شود.
                                                        
 

 
 
 
منبع:
https://ecers.org/electroceramics-conferences
https://ecers.org/news/۱۰۹/۳۹۸/۰۷۲۲-Ceramics-in-Europe-۲۰۲۲/d,ceramic_details_conferences
 
 گردآورندگان:دکتر آدرینه ملک خاچاطوریان-مهندس ریحانه گودرزی

جمع آوری عناصر کمیاب خاکی از زباله های الکترونیکی

 | تاریخ ارسال: 1400/10/13 | 
جمع ­آوری عناصر کمیاب خاکی از زباله­ های الکترونیکی
سازندگان برای ایجاد آهنرباهای قوی مورد استفاده در موتورهای الکترونیکی از جمله خودروهای هیبریدی، ژنراتورهای هواپیما، بلندگوها، هارد دیسک‌ها و هدفون‌های داخل گوش، به عناصر کمیاب خاکی مانند نئودیمیم متکی هستند. اما دسترسی به ذخایر معدنی حاوی نئودیمیم سخت است و تنها در چند نقطه از زمین یافت می­شود.
با افزایش نیاز به نئودیمیم در چندین صنعت، توجه به بازیافت عناصر موجود در رایانه‌های قدیمی و بردهای مدار چاپی، به عنوان زباله‌های الکترونیکی، برای پاسخگویی به تقاضا معطوف شده­است. اما جداسازی عناصر ارزشمند از سایر مواد معدنی و اجزای موجود در زباله­های الکترونیکی یک چالش است.
امیر شیخی، استادیار مهندسی شیمی و مهندسی زیست پزشکی Penn State، در مقاله‌ی اخیر در مجله Chemical Engineering، نانوفناوری جدیدی را برای جداسازی نئودیمیم با استفاده از سلولز گیاهی که در کاغذ، پنبه و خمیر کاغذ یافت می‌شود، توضیح می‌دهد. Patrictia Wamea، یکی از اعضای سابق آزمایشگاه شیخی که در ماه می با مدرک کارشناسی ارشد علوم فارغ التحصیل شد، در نویسندگی این مقاله مشارکت داشت و جایزه سالانه بهترین مقاله وزارت مهندسی شیمی Penn State را در پاییز ۲۰۲۱ به خاطر مشارکت­هایش دریافت کرد. به گفته شیخی، در این فرآیند، نانوبلورهای سلولز مویی، نانوذراتی که از فیبرهای سلولز به دست می‌آیند، به طور انتخابی به یون‌های نئودیمیم متصل می‌شوند و آن­ها را از سایر یون‌ها مانند آهن، کلسیم و سدیم جدا می‌کنند. این نانوذرات به دلیل زنجیره‌های سلولزی متصل به دو سرشان که عملکردهای شیمیایی حیاتی را انجام می‌دهند، به عنوان «مویی» ،hairy، شناخته می‌شوند. برای انجام این کار، پژوهشگران لایه‌های مویی نانوذرات را به منظور جذب و اتصال با یون‌های با بار مثبت نئودیمیم، با بار منفی باردارکردند و در نتیجه ذرات را به قطعات بزرگ‌تری تبدیل کردند که می‌توانند به طور موثر بازیافت شوند و دوباره مورد استفاده قرار گیرند. شیخی گفت: این فرآیند در ظرفیت حذف، گزینش­پذیری و سرعت آن موثر است. همچنین می‌تواند با حذف انتخابی عنصر از برخی ناخالصی‌های آزمایش شده، نئودیمیم را در چند ثانیه جدا کند.
به گفته شیخی، فرآیندهای فعلی بازیافت عناصر خاکی کمیاب برای محیط زیست مضر هستند. آن­ها اغلب از شرایط بسیار اسیدی برای استخراج عناصر در واکنش­های شیمیایی استفاده می­کنند. فرآیند شیخی به دلیل استفاده از سلولز به عنوان منبعی تجدیدپذیر و ارزان قیمت، سازگار با محیط­زیست است. فرآیند استخراج سنتی خطرناک و پرهزینه است و اثرات زیان­بار محیطی ناشی از استخراج روباز دارد. شیخی گفت: استفاده از سلولز به عنوان عامل اصلی، راه­حلی پایدار، مقرون به صرفه و پاک است. با استفاده از این فرآیند، ایالات متحده قادر خواهد بود با غول­های دیگر مانند چین برای بازیابی مواد کمیاب خاکی و تولید مستقل آن­ها رقابت کند. چین بزرگترین صادرکننده نئودیمیم است که بیش از ۷۰ درصد از عرضه جهانی مواد را صادر می­کند.
علاوه بر زباله‌های الکترونیکی، عناصر خاکی کمیاب مانند نئودیمیم را می‌توان از پساب‌های صنعتی، معدن و آهن‌رباهای دائمی استخراج کرد که دیگر مورد استفاده قرار نمی‌گیرند. شیخی گفت که امیدوار است فرآیند جذب مبتنی بر سلولز در آینده در این منابع نیز اعمال شود. شیخی گفت: این کمک به بازیافت خاک­های کمیاب تأثیر استراتژیک و اقتصادی بر چندین صنعت خواهد داشت. هرچه نئودیمیم بیشتری بازیافت کنیم، بیشتر می‌توانیم وسایل نقلیه الکتریکی و هیبریدی و توربین‌های بادی تولید کنیم که منجر به فشار کمتری بر محیط‌زیست می‌شود.
منبع:

https://nano-magazine.com/news/۲۰۲۱/۱۱/۲۵/salvaging-rare-earth-elements-from-electronic-waste
گرد آورندگان:دکتر آدرینه ملک خاچاطوریان-مهندس ریحانه گودرزی

پژوهشگران مواد پایداری برای سلول‌های خورشیدی کارآمدتر ایجاد می‌کنند

 | تاریخ ارسال: 1400/10/5 | 
پژوهشگران مواد پایداری برای سلول­های خورشیدی کارآمدتر ایجاد می­کنند
پژوهشگران دانشگاه Queen Mary لندن، فرآیند جدید تولید مواد پروسکایتی پایدار را برای ایجاد سلول‌های خورشیدی کارآمدتر، توسعه داده‌اند.
سیلیکون بلوری پرمصرف­ترین ماده برای سلول­های خورشیدی است. با­این حال، در طول دهه گذشته، سلول­های خورشیدی پروسکایتی، ساخته شده از مواد پروسکایت هالید فلزی، نوید ساخت سلول­های خورشیدی ارزان­تر و کارآمدتر از سیلیکون را داده­ اند. اما در حالیکه اکنون سلول­های خورشیدی پروسکایت می­توانند از نظر کارایی با سلول­های خورشیدی مبتنی بر سیلیکون تثبیت شده رقابت کنند، یک چالش کلیدی که هنوز به آن توجه نشده­ است، ناپایداری شیمیایی آنهاست. مواد پروسکایتی به رطوبت، اکسیژن و حتی نور بسیار حساس هستند؛ به این معنی که می­توانند به سرعت در هوا تجزیه شوند.
یکی از مواد پروسکایتی، فرمامیدینیم پروسکایت، می­تواند به حل این مشکل کمک کند؛ زیرا ساختار بلوری خالص و سیاه رنگ آن، معروف به FAPbI۳، از نظر شیمیایی پایدارتر از بسیاری از پروسکایت­های دیگر است. خواص نوری آن نیز برای جذب نور و تولید برق پربازده در سلول خورشیدی نسبت به مواد پروسکایت موجود بسیار مناسب­ تر است. بااین­حال، ایجاد این شکل سیاه و پایدار از ماده دشوار است و اغلب می‌تواند فاز زرد رنگی را تشکیل دهد که برای سلول‌های خورشیدی مناسب نیست.
در مطالعه­ای که در مجله Advanced Materials چاپ شده ­است (بلوری کردن بدون افزودنی و در دمای پایین پروسکایت پایدار α-FAPbI۳)، پژوهشگران فرآیند جدیدی را برای ایجاد FAPbI۳ توصیف می­کنند.
یکی از چالش‌های ساخت FAPbI۳ این است که دمای مورد استفاده بالای (۱۵۰ درجه سانتی‌گراد) می‌تواند باعث کشیده شدن بلور‌های درون ماده شود و آن­ها را تحت فشار قرار دهد که به نفع فاز زرد رنگ است. در حالیکه برخی گزارش‌های پیشین از مقادیر کمی از مواد شیمیایی اضافی یا افزودنی‌ها برای کمک به تشکیل FAPbI۳ در این شرایط استفاده کرده‌اند، کنترل یکنواختی و مقادیر این افزودنی‌ها هنگام ساخت سلول‌های خورشیدی در مقیاس بسیار زیاد می‌تواند بسیار سخت باشد. همچنین تأثیر بلندمدت حضور آن­ها هنوز مشخص نیست.
رویکرد جدیدی که در این مطالعه توضیح داده شد، استفاده از فیلم‌های FAPbI۳ در معرض یک آئروسل حاوی مخلوطی از حلال‌ها در دمای پایین‌تر (۱۰۰ درجه سانتی‌گراد) است. پژوهشگران دریافتند که در مقایسه با روش‌های دیگر که ممکن است حدود ۲۰ دقیقه زمان ببرد، می‌توانند پس از یک دقیقه فاز سیاه بسیار پایدار FAPbI۳ را تشکیل دهند. آن‌ها همچنین نشان می‌دهند که دمای پایین‌تر استفاده شده به آرامش بلور‌های درون ماده کمک می‌کند. دکتر Joe Briscoe، خواننده­ی مواد و دستگاه‌های انرژی در Queen Mary، گفت: فرمامیدینیم پروسکایت خالص می‌تواند سلول‌های خورشیدی پروسکایتی را تولید کند که کارآمدتر و پایدارتر از پروسکایت‌های هیبریدی دیگر بر پایه متیل آمونیوم هستند. این می‌تواند برای تجاری‌سازی این فناوری بسیار مهم باشد، به‌ویژه که این فرآیند را می‌توان به راحتی صنعتی کرد.
 در این مطالعه، ما یک رویکرد جدید و کارآمدتر برای ایجاد فرمامیدینیم پروسکایت سیاه خالص و پایدار FAPbI۳ نشان داده‌ایم. از آنجایی که فرآیند ما از ساختار سلول خورشیدی پروسکایت معکوس و دمای آنیل پایین‌تر استفاده می‌کند، این نیز آن را برای ساخت سلول‌های خورشیدی انعطاف‌پذیر روی پلاستیک بسیار مناسب می‌کند که می‌تواند کاربردهای زیادی برای مثال در لباس‌ها و وسایل نقلیه داشته باشد.
منبع:
https://nano-magazine.com/news/۲۰۲۱/۱۲/۱۶/scientists-create-stable-materials-for-more-efficient-solar-cells

گردآورندگان:دکتر آدرینه ملک خاچاطوریان_مهندس ریحانه گودرزی

توسعه مواد پیزوالکتریک سرامیکی بسیار تغییر شکل‌پذیر برای دستگاه‌های لمسی

 | تاریخ ارسال: 1400/8/26 | 
توسعه مواد پیزوالکتریک سرامیکی بسیار تغییر شکل ­پذیر برای دستگاه­های لمسی
با افزایش اهمیت محیط‌های غیر تماسی به دلیل COVID-۱۹، دستگاه‌های الکترونیکی لمسی با استفاده از فناوری لمس (haptic) به‌عنوان رسانه‌های ارتباطی جدید مورد توجه قرار می‌گیرند.
فناوری لمس در طیف گسترده­ای از زمینه­ها مانند روباتیک یا نمایشگرهای تعاملی استفاده می­شود. دستکش­های لمسی برای فناوری ارتباطات اطلاعات تقویت شده استفاده می­شود. مواد پیزوالکتریک کارآمدی که می­توانند محرک­های مکانیکی مختلف را به سیگنال­های الکتریکی تبدیل کنند و بالعکس، پیش­نیازی برای پیشرفت فناوری لمسی با کارایی بالا هستند.
یک تیم پژوهشی به سرپرستی پروفسور Seungbum Hong پتانسیل دستگاه‌های لمسی را با توسعه مواد پیزوالکتریک سرامیکی که تا سه برابر تغییر شکل‌پذیرتر هستند، تأیید کردند. برای ساخت نانومواد بسیار تغییر شکل­پذیر، تیم پژوهشی یک نانوساختار توخالی اکسید­روی با استفاده از نانوالگوسازی میدان مجاور و رسوب لایه اتمی ساختند.
ضریب پیزوالکتریک تقریباً pm/V ۲/۹ اندازه‌گیری شد و آزمایش فشرده‌سازی نانومیله، حد کرنش الاستیک تقریباً ۱۰% را نشان داد که سه برابر بیشتر از اکسید روی بالک است. سرامیک­های پیزوالکتریک دارای ضریب پیزوالکتریک بالا با محدودیت کرنش الاستیک کم هستند؛ در­حالی­که عکس این امر برای پلیمرهای پیزوالکتریک صادق است. بنابراین، دستیابی به عملکرد خوب در هر دو ضرایب پیزوالکتریک بالا و همچنین محدودیت‌های کرنش الاستیک بالا بسیار چالش برانگیز بوده­است. برای شکستن حد الاستیک سرامیک­های پیزوالکتریک، تیم پژوهشی یک نانوساختار توخالی خرپایی سه­بعدی با دیواره­های نازک در مقیاس نانومتری معرفی کردند. با توجه به معیار گریفیث، استحکام شکست یک ماده با جذر اندازه عیب موجود، نسبت معکوس دارد. با­این­حال، یک نقص بزرگ به میزان کمتری در یک ساختار کوچک رخ می­دهد که به نوبه خود، استحکام مواد را افزایش می­دهد. بنابراین، اجرای فرم یک نانوساختار توخالی خرپایی سه­بعدی با دیواره­های نازک در مقیاس نانومتری می­تواند حد الاستیک ماده را افزایش دهد. علاوه­بر­این، یک ساختار سه­بعدی یکپارچه می­تواند در برابر فشارهای بالا در همه­ی جهات مقاومت کند و همزمان از خسارت ناشی از گلوگاه جلوگیری کند. پیش از این، کنترل خاصیت شکست مواد سرامیکی پیزوالکتریک به دلیل واریانس زیاد در اندازه‌های ترک دشوار بود. با­این­حال، تیم پژوهشی از نظر ساختاری، اندازه ترک را برای مدیریت خواص شکست محدود کرد.
نتایج پروفسور Hong پتانسیل توسعه مواد پیزوالکتریک سرامیکی بسیار تغییر شکل­پذیر را با بهبود حد الاستیک با استفاده از یک نانوساختار توخالی سه­بعدی نشان می­دهد. از آنجایی که اکسیدروی دارای ضریب پیزوالکتریک نسبتاً پایینی در مقایسه با سایر مواد سرامیکی پیزوالکتریک است، استفاده از ساختار پیشنهادی برای چنین اجزایی نتایج بهتری را از نظر فعالیت پیزوالکتریکی وعده می‌دهد.
پروفسور Hong گفت: "با ظهور عصر غیرتماسی، اهمیت ارتباطات عاطفی در حال افزایش است. از طریق توسعه فناوری‌های جدید تعامل لمسی، علاوه بر ارتباطات دیداری و شنیداری کنونی، بشر وارد عصر جدیدی می‌شود که در آن می‌تواند با هر کسی با استفاده از هر پنج حس و بدون توجه به موقعیت مکانی ارتباط برقرار کند، انگار که شخصاً با آن­ها هستند. "در­حالی­که تحقیقات بیشتری باید برای تحقق کاربرد طرح­های پیشنهادی برای دستگاه­های تقویت­کننده لمسی انجام شود، این مطالعه به دلیل حل یکی از چالش برانگیزترین مسائل در استفاده از سرامیک­های پیزوالکتریک ارزش بالایی دارد و به ویژه فرصت­های جدیدی را برای استفاده از آن­ها با غلبه بر محدودیت­های مکانیکی می­گشاید.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:
https://www.azom.com/news.aspx?newsID=۵۵۴۷۹

انتخابات هیات مدیره انجمن صنفی تولیدکنندگان کاشی و سرامیک کشور

 | تاریخ ارسال: 1400/9/13 | 

کنفرانس سیمان

 | تاریخ ارسال: 1400/8/26 | 
کنفرانس سیمان
Cemtech Americas ۲۰۲۱
۲۳ و ۲۴ نوامبر ۲۰۲۱

این کنفرانس مجازی شامل ارائه ­هایی از رهبران صنعت منطقه و کارشناسان فناوری در رابطه با آخرین تحولات منطقه است و برخی از بازارهای پیشرو جهان از جمله ایالات متحده امریکا، مکزیک، کلمبیا و برزیل را در­بر­می­گیرد.
موضوعات کلیدی مرتبط با بخش سیمان منطقه ­ای:
  • به­روزرسانی صنعت و روند بازار در سراسر قاره آمریکا
  • بهترین روش در فناوری تولید
  • نقشه راه فناوری و روندهای کربن­زدایی
این برنامه دیدگاه­ های کلیدی در مورد بهترین شیوه تولید سیمان از جمله تعمیر و نگهداری و بهره ­وری عملیاتی، فرآوری حرارتی و سوخت ­های جایگزین، کنترل کیفیت و توسعه محصول، سیستم های آسیاب، کنترل فرآیند پیشرفته و دیجیتالی­ سازی، تدارکات سیمان و بتن آماده، کنترل انتشار، جابه ­جایی مواد بالک و طراحی ترمینال، سیمان با دی­ اکسید­کربن کم و خاک رس کلسینه شده را پوشش خواهد داد.
 
گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع: 
  https://www.cemnet.com/Conference/Item/۱۸۸۲۲۰/cemtech-americas-۲۰۲۱.html

 

شیشه الماسی پنهان در آینده ی بدون کربن است!

 | تاریخ ارسال: 1400/8/26 | 
شیشه الماسی پنهان در آینده ی بدون کربن است!
 بازیافت شیشه باعث تخریب آن نمی شود و تولید شیشه می تواند بدون استفاده از کربن صورت گیرد. پس چرا بسیاری از کشورها هنوز شیشه را در زمین دفن می کنند؟
 شیشه را میتوان بی نهایت مرتبه بازیافت کرد، بدون اینکه خاصیت خود را از دست بدهد. پس چرا بیشتر کشورها - به استثنای کشورهای اروپایی - هنوز بیشتر شیشه های خود را دفن می کنند؟ طبق گزارش آژانس حفاظت از محیط زیست ایالات متحده، در سال ۲۰۱۸، ایالات متحده به تنهایی تقریباً ۷ میلیون تن شیشه را در محل های دفن زباله تخلیه کرد که ۵.۲ درصد از کل زباله های جامد شهری را تشکیل می دهد.
در سراسر جهان، تولید شیشه در هر سال حداقل ۸۶ میلیون تن دی اکسید کربن تولید می کند. اما بسیاری از این موارد را می توان با بازیافت شیشه حذف کرد چراکه فناوری های موجود می توانند تولید شیشه را به فرآیندی عمدتاً بدون کربن تبدیل کنند. آنچه باید اتفاق بیفتد این است که کشورها بازیافت شیشه را اجباری کرده و ارسال شیشه به محل های دفن زباله را متوقف کنند.
 تولید برخی از این مواد می تواند با استفاده از شیشه های بازیافتی خرد شده که به نام cullet شناخته می شوند، انجام گیرد. هنگامی که کولت ذوب می شود، گازCO۲  آزاد نشده و کوره ها نیز مجبور نیستند برای ذوب شیشه به شدت بسوزند تا مواد خام ذوب شوند و همین امر باعث صرفه جویی بیشتر در مصرف کربن می گردد. به گفته ی فدراسیون شیشه مظروف اروپا (FEVE)، یک گروه صنعتی مستقر در بروکسل اظهار داشته اند که استفاده از ۱۰ درصد بیشتر cullet در یک کوره، انتشار CO۲ را به میزان ۵ درصد(در مقایسه با حالتی که شیشه کاملا از مواد خام تهیه می شود) کاهش داده است.
شایان ذکر است در بازیافت شیشه ها لازم است نکاتی مد نظر قرار گیرند. به عنوان مثال، نوع شیشه ای که برای ساختن پنجره ها استفاده می شود - که به عنوان شیشه تخت شناخته می شود - برخلاف شیشه های مورد استفاده در بسیاری از کاربردهای دیگر، نمی تواند حاوی ناخالصی باشد. بنابراین امکان ذوب شیشه های مربا برای گرفتن شیشه پنجره وجود ندارد. اما می توان از cullet های شیشه ای تخت برای ساخت شیشه های مسطح  استفاده کرد.
سه چهارم شیشه مورد استفاده برای ظروفی مانند بطری ها، در تمامی ۲۷ کشور عضو اتحادیه اروپا و بریتانیا به منظور بازیافت جمع آوری می گردد اما کشورهای دیگر در جایی که باید باشند نیستند! علاوه بر این، یافتن داده‌های مربوط به بازیافت شیشه ها دشوار است زیرا بیشتر کشورها گزارشی از آنچه انجام می‌دهند ارایه نداده و به نظر می رسد هیچ نهاد بین المللی برای جمع آوری داده های بازیافت شیشه وجود ندارد. با این حال، تلاش های ملی برای بهبود نرخ جمع آوری و بازیافت در حال انجام است. ایالات متحده به طور متوسط ​​فقط ۳۱٪ از ظروف شیشه ای خود را بازیافت می کند، اما یک موسسه بسته بندی شیشه ای در یک انجمن تجاری مستقر در ویرجینیا تلاش می کند تا این میزان را تا سال ۲۰۳۰ به ۵۰٪ افزایش دهد. به طور مشابه، پروژه ای که توسط شرکت بازیافت شیشه در ژوهانسبورگ اجرا شد، نرخ بازیافت را در سراسر آفریقای جنوبی از ۱۸ درصد در سال های ۲۰۰۵-۲۰۰۶ به ۴۲ درصد در سال های ۲۰۱۸-۱۹ افزایش داد.
شیشه یک ماده ضروری است و این امکان وجود دارد که ساخت آن در مدت زمان نسبتاً کوتاه و تقریباً بدون کربن انجام شود اما قانون گذاری هایی لازم است تا از درستی روش جمع آوری و بازیافت شیشه اطمینان حاصل گردد.


گردآورندگان: مهندس پریا شیخ
منبع: https://www.nature.com/articles/d۴۱۵۸۶-۰۲۱-۰۲۹۹۲-۸


کنفرانس خنثایی کربن با شیشه

 | تاریخ ارسال: 1400/8/8 | 
کنفرانس خنثایی کربن با شیشه
۲۵ و ۲۶ نوامبر ۲۰۲۱
 
شرایط اقلیمی خنثی و کربن ­زدایی، چالش­های بزرگ عصر ما برای تجارت و جامعه هستند. همچنین صنعت جهانی شیشه برای کمک به تولید کربن خنثی، وظیفه­ ی توسعه­ ی راه ­حل­های جایگزین را بر عهده دارد.
متخصصان صنعت و علم شیشه، بینش­های ارزشمندی را در مورد روند تحول، تحت عنوان کنفرانس "خنثایی کربن با شیشه"، در این صنعت ارائه می­دهند.
برای همه روشن است: چیزی باید تغییر کند.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع: 
https://www.glassonline.com/glasstec-update-conference-carbon-neutrality-with-glass/

پژوهشگران پیل سوختی سرامیکی جدیدی ایجاد کرده‌اند که پایداری و عملکرد بالایی را ارائه می-دهد

 | تاریخ ارسال: 1400/8/5 | 
پژوهشگران پیل سوختی سرامیکی جدیدی ایجاد کرده­اند که پایداری و عملکرد بالایی را ارائه می­دهد 
محدوده کاربرد پیل­های سوختی سرامیکی که تا کنون تنها به دلیل مشکلات مربوط به راه اندازی­های مکرر برای تولید نیرو در مقیاس بزرگ مورد استفاده قرار گرفته­ است، انتظار می­رود که در زمینه­ های جدیدی مانند وسایل نقلیه برقی، روبات­ها و هواپیماهای بدون سرنشین گسترش یابد. 
به موسسه علم و فناوری کره (KIST) اعلام کرد که تیمی به سرپرستی دکتر جی وون سون در مرکز تحقیقات مواد انرژی، از طریق پژوهش­های مشترک با پروفسور سونگ مین هان در موسسه پیشرفته علم و فناوری کره (KIST)، فناوری جدیدی را توسعه داده­است که با کاهش قابل توجه مقدار و اندازه کاتالیزور نیکل در آند با استفاده از فناوری فیلم نازک، فرسایش ناشی از چرخه اکسایش-کاهش را که عامل اصلی تخریب پیل سوختی سرامیکی است، مهار می­کند.
سلول­های سوختی سرامیکی، نماینده پیل­های سوختی با درجه حرارت بالا، عموماً در دمای بالا ۸۰۰ درجه سانتیگراد یا بالاتر عمل می­کنند. بنابراین، کاتالیزورهای ارزان قیمت، مانند نیکل، می­توانند در این سلول­ها استفاده شوند؛ در مقابل پیل­های سوختی الکترولیت پلیمری با دمای پایین که از کاتالیزورهای گران قیمت پلاتین استفاده می­کنند. نیکل معمولاً تقریباً ۴۰% حجم آند پیل سوختی سرامیکی را شامل می­شود. با این حال، از آنجا که نیکل در دماهای بالا تجمع می­یابد، هنگامی که پیل سوختی سرامیکی در معرض فرآیندهای اکسیداسیون و کاهش همراه با چرخه توقف راه ­اندازی مجدد قرار می­گیرد، گسترش غیرقابل کنترل رخ می­دهد. این منجر به تخریب کل ساختار پیل سوختی سرامیکی می­شود. این عیب کشنده مانع از تولید نیرو توسط پیل­های سوختی سرامیکی در مواردی می­شود که نیاز به راه ­اندازی مکرر دارد.
در تلاش برای غلبه بر این، تیم دکتر جی وون سون در KIST یک مفهوم جدید برای یک آند ایجاد کردند که حاوی نیکل کمتری است، فقط ۲۰/۱ پیل سوختی سرامیکی معمولی. این مقدار نیکل کاهش یافته باعث می­شود ذرات نیکل موجود در آند از یکدیگر جدا بمانند. برای جبران کاهش مقدار کاتالیزور نیکل، سطح نیکل از طریق تحقق ساختار آندی که در آن نانوذرات نیکل به طور مساوی در سراسر ماتریس سرامیک با استفاده از یک فرآیند رسوب لایه نازک توزیع شده­اند، به شدت افزایش می­یابد. در پیل­های سوختی سرامیکی که از این آند جدید استفاده می­کنند، هیچگونه خرابی یا تخریب عملکردی پیل­های سوختی سرامیکی حتی پس از بیش از ۱۰۰ چرخه اکسایش-کاهش، در مقایسه با پیل­های سوختی سرامیکی معمولی که پس از کمتر از ۲۰ چرخه از کار افتاد، مشاهده نشد. علاوه بر این، قدرت خروجی پیل­های سوختی سرامیکی با آند جدید، با وجود کاهش قابل توجه محتوای نیکل، ۵/۱ برابر سلول­های معمولی بهبود یافت. 
دکتر جی وون سون اهمیت این مطالعه را توضیح داد و اظهار داشت: "پژوهش­های ما در مورد پیل سوختی آند جدید به طور سیستماتیک در هر مرحله، از طراحی تا تحقق و ارزیابی، بر اساس درک ما از شکست اکسایش-کاهش انجام شد که یکی از عوامل اصلی تخریب پیل­های سوختی سرامیکی است. " دکتر سون همچنین اظهار داشت: "پتانسیل استفاده از این پیل­های سوختی سرامیکی در زمینه­ هایی غیر از نیروگاه­ها، مانند تحرک، بسیار زیاد است. "
گرداورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبعhttps://www.azom.com/news.aspx?newsID=۵۵۵۹۵
 

لایه‌های پیچ خورده‌ی MoS۲، مهندسی حالت‌های جدید ماده را امکان پذیر می‌کند

 | تاریخ ارسال: 1400/8/5 | 
لایه­ های پیچ خورده­ ی MoS۲، مهندسی حالت­های جدید ماده را امکان پذیر می­کند
تیمی از پژوهشگران آلمان، چین و ایالات متحده دریافتند که از دو لایه پیچ خورده MoS۲ می­توان برای کنترل مقیاس­های انرژی جنبشی در جامدات استفاده کرد. علاوه بر استفاده از زاویه­ ی چرخش برای کنترل خواص الکترونیکی مواد، پژوهشگران اکنون نیز ثابت کرده­اند که الکترون­های موجود در MoS۲ می­توانند به طور مخرب تداخل ایجاد کرده و حرکت آن­ها را برای مسیرهای خاص متوقف کنند. این ویژگی مهندسی حالت­های مغناطیسی عجیب را ممکن می­سازد.
پژوهش دانشمندان موسسه ماکس پلانک برای ساختار و پویایی ماده در هامبورگ، RWTH Aachen، دانشگاه کلن، آزمایشگاه مواد Songhan Lake، مرکز فیزیک کوانتومی محاسباتی (Computational Quantum Physics, CCQ) در نیویورک و دانشگاه پنسیلوانیا در Nature Communications منتشر شده است.( تحقق نوارهای تقریباً بدون پراکندگی با ناهمسانگردی اوربیتالی قوی از تداخل مخرب در پیچش دو لایه MoS۲)
در سال­های اخیر، مواد دو بعدی که در یک پیچ و تاب نسبی به یکدیگر پیچیده شده ­اند (معروف به "مواد واندر والس پیچ خورده")، پژوهش ­های مواد چگال را متحول کرده­ است. بسته به زاویه پیچش نسبی، شبکه ­های بلوری یک الگوی تداخل بزرگتر را تشکیل می­دهند-الگوی moiré-که می­تواند عملکردهای موج الکترونیکی در جامدات را تغییر دهد. لده شیان، نویسنده اصلی این مطالعه توضیح می­دهد: "این مواد پیچ ​​خورده جذاب هستند؛ زیرا می­توان از آن­ها برای مهندسی خواص الکترونیکی جدید با انعطاف­پذیری بی­سابقه استفاده کرد. به این دلیل که زاویه چرخش راه موثری برای جلوگیری از تحرک الکترون­ها ارائه می­دهد. "
اخیراً، این اثر با موفقیت برای نشان دادن ابررسانایی کنترل شده با زاویه چرخش، رفتار عایق و حتی پدیده ­های عجیب­تر مانند فازهای کوانتومی ناهنجار هال به کار گرفته شد. این پیشرفت باعث انقلاب کار پژوهشی در مورد موضوع جذاب خواص مهندسی حالت جامد جدید با استفاده از پیچ و تاب شده است که بسیاری از آن­ها در MPSD پیشگام بوده ­اند. با این حال، اکنون تیم پژوهشی بین­ المللی یک ماده دو بعدی جدید را مرکز توجه قرار داده­ است: MoS۲ یا دی سولفید مولیبدن.
دومینیک کیسه، دانشجوی دکتری در دانشگاه کلن می­گوید: "جنبه جدید و کاملاً شگفت انگیز در MoS۲ پیچ خورده این واقعیت است که تداخل کوانتومی می­تواند خواص الکترونیکی جامدات را حتی بیشتر تغییر دهد. ما کشف کردیم که حداقل برای برخی از حالت­های الکترونیکی، حرکت الکترون­ها در  MoS۲پیچ خورده می­تواند به گونه­ای تداخل داشته باشد که آن­ها تقریباً به طور کامل حرکت خود را متوقف کنند. " این اثر جدید در صدر فرصت­های مهندسی ارائه شده توسط پیچاندن قرار می­گیرد. این شبیه رفتارهایی است که در مدل­های نمونه اولیه مانند شبکه Lieb وجود دارد که در گذشته توجه فوق العاده­ای را به خود جلب کرده بود؛ اما تحقق آن در مواد جامد تا کنون دشوار بوده است. با استفاده از پیچ و تاب لایه­ های MoS۲ و تنظیم رژیم تحت سلطه همبستگی، دسترسی به حالت­های جدید ماده مانند انواع مغناطیس عجیب امکان پذیر می­شود. این روش جدید و متفاوتی برای مهندسی خواص الکترونیکی است، همانطور که تیم تحقیق نشان داده­است.

دانته کنس، استاد دانشگاه  RWTH Aachen می­گوید: "ما نشان دادیم که مهندسی moiré می­تواند برای ارائه یک بستر مبتنی بر ماده متراکم برای گروه دیگری از مدل­های نمونه اولیه Hamiltonians استفاده شود. "  روبیو ، مدیر نظریه MPSD می­افزاید: با توجه به فراوانی مواد برای انتخاب، ممکن است بسیاری از جلوه ­های جدید هنوز در انتظار کشف باشند. این مواد آنقدر کاربردی هستند که انواع بسیار متفاوتی از خصوصیات الکترونیکی یا ساختاری، مقیاس­های اوربیت اسپین یا چرخش و شبکه­ های هندسی را نشان می­دهند به طوری که ما به وضوح تنها در آغاز یک سفر طولانی و هیجان انگیز برای کشف پتانسیل کامل آن­ها هستیم. پژوهش این تیم، گامی مهم در این مسیر است. "
 
گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:
https://nano-magazine.com/news/۲۰۲۱/۹/۲۷/twisted-layers-of-mos۲-enable-the-engineering-of-novel-states-of-matter

کنترل فرآیند آماری در فرآوری سرامیک

 | تاریخ ارسال: 1400/7/18 | 
کنترل فرآیند آماری در فرآوری سرامیک
کلاس آنلاین- ۲۹ اکتبر ۲۰۲۱

 
این دوره مقدمه ­ای بر کنترل فرآیند آماری (Statistical Process Control, SPC) و سپس کاربرد آن در فرآوری سرامیک را ارائه می­دهد. SPC به مجموعه­ ای قدرتمند از ابزارها برای نظارت بر هر مرحله از فرآیند تولید تبدیل شده ­است تا به کنترل آن کمک کند. هدف کلی کاهش تلفات، بهبود بهره ­وری، کاهش هزینه­ های تولید، بهبود کیفیت محصول و بهبود سود به طور همزمان است. ابزارهای SPC به فرد این امکان را می­دهد که تغییر فرآیند، چه خوب چه بد، را مشاهده کند و سپس با هدف حفظ پیشرفت­ها، اقداماتی را برای بازپس ­گیری کنترل یا تجزیه و تحلیل علل تغییرات انجام دهد. به جای بررسی کیفیت تولید، هدف این است که هر مرحله از فرآیند را در طول فرآیند کلی کنترل کرده و در نتیجه از تشدید مشکلات در نهایت جلوگیری کنیم.
استفاده از SPC در فرآوری سرامیک نه تنها مستلزم آگاهی از  SPCاست؛ بلکه نیازمند دانستن اصول اولیه هر مرحله­ ی فرآوری سرامیک نیز است. با اینکه این دوره عمیقاً به جزئیات فرآوری سرامیک نمی­ پردازد، آنها را به اندازه کافی مورد بحث قرار می­دهد تا نشان دهد چگونه می­توان از SPC استفاده کرد. تعدادی از مثال­ها مورد بحث قرار خواهد گرفت. موضوع بهبود مستمر با استفاده از SPC و طراحی آزمایش­ ها برای بهبود مستمر یا بزرگ مورد بحث قرار خواهد گرفت.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی

منبع:
https://ceramics.org/professional-resources/career-development/short-courses/statistical-process-control-in-ceramic-processing
 

وبینار بازرسی در تولید شیشه

 | تاریخ ارسال: 1400/7/18 | 
وبینار بازرسی در تولید شیشه
سه­ شنبه ۵ اکتبر ۲۰۲۱
بازرسی بخش مهمی از تولید شیشه است و کیفیت محصول نهایی بسیار مهم است. در این وبینار، متخصصان برخی از آخرین فناوری­ها و روندهایی را که به اطمینان از بهبود کارایی تولیدکنندگان شیشه و کاهش شکستگی کمک کرده­است، مورد بحث قرار خواهند داد.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:  https://eventsemea۲.adobeconnect.com/content/connect/c۱/۴۰۱۸۰۱۹۸۱۵/en/events/event/shared/۸۳۸۱۱۰۸۶۶۲/event_landing.html?sco-id=۸۳۸۱۰۶۲۲۱۵&_charset_=utf-۸

مواد جدید از سربازان، ورزشکاران و رانندگان بهتر محافظت می‌کنند

 | تاریخ ارسال: 1400/6/15 | 
مواد جدید از سربازان، ورزشکاران و رانندگان بهتر محافظت می­کنند
بر اساس یک مطالعه جدید، سربازان، ورزشکاران و رانندگان به لطف فرآیند جدیدی که می­تواند به حفاظت کارآمدتر و قابل استفاده مجدد در برابر شوک، ضربه، انفجار و ارتعاش منجر شود، می­توانند زندگی ایمن­تری داشته باشند.
قرار دادن تحت فشار محلول­های آبی در مواد نانوساختار دافع آب، مانند زئولیت­ها و چارچوب­های فلزی-آلی، می­تواند به ایجاد سیستم­های جذب انرژی با عملکرد بالا کمک کند.
یک تیم پژوهشی بین ­المللی چارچوب­های imidazolate زئولیت پایدار هیدروترمال (ZIFs) را با ساختار مولکولی قفس مانند آب گریز، آزمایش کرد و دریافت که چنین سیستم­هایی به طور قابل توجهی جذب کننده ­ی انرژی مؤثر در شرایط بارگذاری واقعی و با سرعت بالا هستند و این پدیده با خوشه ­بندی آب و تحرک در نانوقفس ­ها مرتبط است.
پژوهشگران دانشگاه بیرمنگام و آکسفورد به همراه دانشگاه گنت بلژیک، امروز یافته­های خود را در Nature Materials  منتشر کردند.
دکتر Yueting Sun، مدرس مهندسی در دانشگاه بیرمنگام، اظهار داشت: "امروزه لاستیک به طور گسترده ­ای برای جذب شوک استفاده می­شود؛ اما فرآیندی که ما کشف کرده­ ایم، موادی را ایجاد می­کند که می­تواند انرژی مکانیکی بیشتری را در هر گِرم با قابلیت استفاده ­ی مجدد بسیار خوب به دلیل مکانیزم منحصر به فرد در مقیاس نانو، جذب کند. این ماده در ایمنی تصادف­ های خودرو برای سرنشینان و عابران پیاده، خودروهای زره ی نظامی، زیرساخت­ ها و همچنین حفاظت از بدن انسان اهمیت زیادی دارد. سربازان و پلیس می­توانند از زره بدن و لباس­های بمب بهتری استفاده کنند، ورزشکاران ممکن است از کلاه ایمنی، زانو بند و کفی کفش مؤثرتری استفاده کنند زیرا ماده مانند مایع و برای پوشیدن انعطاف پذیر است. "
قابلیت استفاده مجدد از ماده، ناشی از اکستروژن خود به خود مایع، همچنین باعث می­شود که ماده برای اهداف میرا مناسب باشد، به این معنی که می­توان از آن برای ایجاد وسایل نقلیه با سر و صدا و ارتعاش کمتر و همچنین راحتی در حرکت بهتر استفاده کرد. این ماده همچنین می­تواند برای کاهش ارتعاشات مضر و سر و صدا و کاهش هزینه­ های تعمیر و نگهداری، در ماشین آلات قرار گیرد. همچنین می­توان از آن برای کاهش آسیب پذیری در برابر زلزله­ ی پل­ها و ساختمان­ها استفاده کرد.
پیشرفته ­ترین مواد جذب انرژی در حال حاضر بر فرآیندهایی مانند تغییر شکل گسترده پلاستیک، تغییر سلول و اتلاف ویسکوالاستیک تکیه می­کنند. این امر ایجاد موادی را که بتوانند در برابر ضربه ­های متعدد محافظت کارآمد ایجاد کنند، دشوار می­کند.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:
https://nano-magazine.com/news/۲۰۲۱/۴/۲۳/new-material-could-better-protect-soldiers-athletes-and-motorists

زاویه‌ی جادویی گرافن پیچ‌خورده

 | تاریخ ارسال: 1400/6/15 | 
زاویه­ ی جادویی گرافن پیچ­ خورده
گرافن، ماده­ ای دو بعدی که منحصراً از کربن تشکیل شده­ است، خواص فوق العاده­ای از جمله رسانایی حرارتی و الکتریکی، شفافیت و انعطاف­پذیری را آشکار کرده­است. هنگامی­که این ویژگی­ها در عصر صفحات لمسی و وسایل الکترونیکی انعطاف­پذیر ترکیب شوند، بسیار جالب می­شوند. پروفسور Jean-Christophe Charlier، متخصص فیزیک نانوسکوپی در انستیتوی ماده متراکم و علوم نانو UCLouvain، توضیح می­دهد: "برخلاف مواد سه بعدی، ارتفاع گرافن به بُعد نهایی اتم کاهش یافته­است. بنابراین این یک سطح اتم کربن است."
در پژوهشی که در Nature منتشر شد، پژوهشگر و تیم او، رفتار الکترون­ها را وقتی­که دو لایه گرافن در زاویه ­ی ۱/۱ درجه (که به اصطلاح "زاویه جادویی" نامیده می­شود) اثر moiré ایجاد می­کنند، تشریح کردند. این اثر نوری که برای عکاسان، نقاشان و متخصصان مد بسیار شناخته شده ­است، شامل یک شکل است که از حوزه­های تاریک و روشن تشکیل شده­ است و ناشی از روی هم قرار گرفتن دو شبکه است. پروفسور Charlier می­گوید: "هنگامی که دو لایه گرافن با این زاویه جادویی روی هم قرار می­گیرند، باعث ایجاد ابررسانایی می­شوند. بنابراین آن­ها الکتریسیته را بدون هیچ گونه مقاومتی هدایت می­کنند. "
این ویژگی برای انتقال برق بدون اتلاف انرژی بسیار مفید است. "ما نشان دادیم که دو صفحه گرافن که به این ترتیب پیچ خورده­اند، برهم کُنش می­کنند و منجر به تجدید ساختار اتم­ها در حوزه ­هایی می­شوند که الکترون­ها محبوس شده و در فضا قرار دارند." با این حال، طبق تعریف، الکترون­ها تمایل دارند از یکدیگر دور شوند و توسط بارهای منفی مربوطه دفع می­شوند. " برای محدود کردن کُنش خود، الکترون­ها می­توانند با ترازکردن اسپین خود که به آن­ها خواص مغناطیسی می­دهد، یا با ایجاد یک عایق یا با هم برای تولید ابررسانایی، سازمان یابند." این آخرین موردی است که در مورد گرافن دو لایه پیچ خورده در زاویه جادویی رخ می­دهد. علاوه ­براین، پژوهشگران نشان داده­ اند که فونون­ها، ذرات اتمی که مسئول ارتعاشات مواد جامد هستند نیز در حوزه­هایی که توسط گرافن پیچ خورده ایجاد شده است، به دام افتاده ­اند. 
سنتز مواد دو بعدی جدید و مشاهده خواص خارق العاده­ای که می­توان از آن­ها به دست آورد، باعث شده ­است که این ایده یک روز بتواند سازه ­هایی با ویژگی­های مورد نظر "آجر به آجر" ایجاد کند یا برای به دست آوردن دانش بدست آمده از مواد ساده مانند گرافن، به مواد پیچیده تر، که امکان کنترل یا عملکرد بهتر سیستم­ های ابررسانا در زندگی روزمره را فراهم می­آورد. به عنوان مثال، سیم­ پیچ ­های ابررسانا در قطارهای شناور مغناطیسی ژاپن (Maglev) که از بالای ریل­ها حرکت می­کنند، یا آهنربای ابررسانا در تجهیزات تصویربرداری رزونانس مغناطیسی (MRI). 

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:  https://nano-magazine.com/news/۲۰۲۱/۲/۲۴/the-magic-angle-of-twisted-graphene

لایه‌ای از سه بلور، هزار برابر انرژی بیشتری در سلول خورشیدی تولید می‌کند

 | تاریخ ارسال: 1400/6/10 | 
 لایه­ای از سه بلور، هزار برابر انرژی بیشتری در سلول خورشیدی تولید می­کند
اگر سه ماده­ ی مختلف به طور دوره­ای در یک شبکه قرار بگیرند، اثر فتوولتائیک بلورهای فروالکتریک با ضریب هزار قابل افزایش است. این در مطالعه­ ی پژوهشگرانMartin Luther University Halle-Wittenberg (MLU)  نشان داده شده­ است. آن­ها با ایجاد لایه­ های بلوری تیتانات باریم، تیتانات استرانسیم و تیتانات کلسیم که به تناوب روی یکدیگر قرار می­گرفتند، به این دست یافتند.
یافته­ های آن­ها که می تواند به طور قابل توجهی بازدهی سلول­های خورشیدی را افزایش دهد، در مجله Science Advances (اثر فتوولتائیک بسیار افزایش یافته و قابل تنظیم در ابرشبکه ­های فروالکتریک-پارالکتریک) منتشر شد.
در حال حاضر اکثر سلول­های خورشیدی مبتنی بر سیلیکون هستند. با این حال، بازده ی آن­ها محدود است. این امر پژوهشگران را بر آن داشته است تا مواد جدیدی مانند فروالکتریک­ هایی چون باریم تیتانات، یک اکسید مخلوط ساخته شده از باریم و تیتانیوم، را بررسی کنند.
دکتر Akash Bhatnagar، فیزیکدان از مرکز MLU برای صلاحیت نوآوریSiLi-nano ، توضیح می­دهد: "فروالکتریک به این معنی است که ماده بارهای مثبت و منفی را به طور فضایی از هم جدا کرده است. جداسازی بار منجر به ساختاری نامتقارن می­شود که امکان تولید برق از نور را فراهم می­کند."
برخلاف سیلیکون، بلورهای فروالکتریک برای ایجاد اثر فتوولتائیک به اتصال pn نیاز ندارند، به عبارت دیگر، هیچ لایه­ ی دوپ مثبت و منفی وجود ندارد. این امر تولید پنل­ های خورشیدی را بسیار آسان می­کند. با این حال، تیتانات باریم خالص نور خورشید زیادی جذب نمی­کند و در نتیجه یک جریان نوری نسبتاً کم ایجاد می­کند. آخرین پژوهش­ ها نشان داده است که ترکیب لایه­ های بسیار نازک از مواد مختلف به طور قابل توجهی عملکرد انرژی خورشید را افزایش می دهد.
Bhatnagar توضیح می­دهد: "نکته مهم در اینجا این است که یک ماده فروالکتریک با یک ماده پاراالکتریک جایگزین شود. اگرچه ماده دوم بار جداگانه­ای ندارد؛ اما تحت شرایط خاص می­تواند فروالکتریک شود. به عنوان مثال در دمای پایین یا هنگامی که ساختار شیمیایی آن کمی اصلاح شده باشد."  گروه پژوهشی Bhatnagar کشف کرد که اگر لایه فرو الکتریک نه تنها با یک، بلکه با دو لایه­ ی مختلف پاراالکتریک جایگزین شود، اثر فتوولتائیک بسیار افزایش می­یابد.
Yeseul Yun، دانشجوی دکتری MLU و اولین نویسنده این مطالعه ، توضیح می دهد: "ما تیتانات باریم را بین تیتانات استرانسیم و تیتانات کلسیم تعبیه کردیم. این با بخار شدن بلورها با لیزر پرقدرت و قرار گرفتن مجدد آن­ها روی لایه های حامل حاصل شد. این ماده ­ای از ۵۰۰ لایه ساخت که حدود ۲۰۰ نانومتر ضخامت دارد. "هنگام انجام اندازه ­گیری­ های فوتوالکتریک، ماده جدید با نور لیزر تابانده شد. نتیجه حتی گروه پژوهشی را متعجب کرد: در مقایسه با تیتانات باریم خالص با ضخامت مشابه، جریان فعلی تا هزار برابر بیشتر بود و این با وجود این واقعیت است که تقریباً دو سوم از نسبت تیتانات باریم به عنوان جز اصلی فوتوالکتریک کاسته شد. Bhatnagar توضیح می­دهد: "به نظر می­رسد فعل و انفعال بین لایه­های شبکه منجر به قدرت­ پذیری بسیار بالاتری می­شود، به عبارت دیگر، الکترون­ها به دلیل تحریک توسط فوتون­ های نور قادر به جریان بسیار راحت­ تری هستند. "
اندازه ­گیری­ ها همچنین نشان داد که این تأثیر بسیار قوی است: در طی یک دوره­ ی شش ماهه تقریباً ثابت مانده است.
اکنون باید پژوهش­ های بیشتری انجام شود تا مشخص شود که دقیقاً چه عواملی باعث تأثیر برجسته فوتوالکتریک می­شود. Bhatnagar اطمینان دارد که پتانسیل نشان داده شده توسط مفهوم جدید می­تواند برای کاربردهای عملی در صفحات خورشیدی استفاده شود. "ساختار لایه عملکرد بالاتری نسبت به فروالکتریک خالص در تمام دامنه ­های دمایی نشان می­دهد. بلورها همچنین به طور قابل توجهی دوام بیشتری دارند و به بسته­ بندی خاصی نیاز ندارند.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:    
https://nano-magazine.com/news/۲۰۲۱/۷/۲۱/layer-of-three-crystals-produces-a-thousand-times-more-power-in-solar-cells

مکسن‌های با آنتروپی بالا که به تازگی کشف شده‌اند، کاربردهای پیشرفته‌ای دارند

 | تاریخ ارسال: 1400/6/10 | 
مکسن ­های با آنتروپی بالا که به تازگی کشف شده ­اند، کاربردهای پیشرفته­ ای دارند
پژوهشگران موسسه توسعه نانوسیستم­های یکپارچه IUPUI و گروه مهندسی مکانیک و انرژی در دانشکده مهندسی و فناوری، نانوذرات جدیدی را کشف کرده­ اند که دارای کاربردهای پیشرفته از جمله ذخیره انرژی و سفر به فضا هستند. آن­ها به عنوان نانوذرات با آنتروپی بالا شناخته می­شوند و به خانواده ­ای از نانومواد دوبعدی معروف به مکسن­ها، نانوذرات سرامیکی با عملکرد بسیار عالی و نازک با اندازه جانبی بزرگتر، مانند یک ورق کاغذ، پیوستند. این یافته که در مطالعه منتشر شده در ACS Nano (مکسن کاربیدی دوبعدی آنتروپی بالا: TiVNbMoC۳ و TiVCrMoC۳) برجسته شده ­است، نشان دهنده­ ی گسترش دیگری از مکسن‌ها از زمان کشف اولیه آن­ها در سال ۲۰۱۱ است و خانواده مکسن­های موجود را بسیار گسترش می­دهد.
Babak Anasori استادیار مهندسی مکانیک و انرژی و پژوهشگر اصلی مطالعه گفت: "این نانوذرات تازه کشف شده با آنتروپی بالا به ایجاد یک جعبه ابزار برای طراحی بیشتر مکسن‌ها و تنظیم ویژگی­های آن­ها کمک خواهد کرد. مکسن‌ها در حال حاضر، از مستحکم­ترین مواد دوبعدی هستند که تاکنون کشف شده است. ما انتظار داریم که این نانوذرات با آنتروپی بالا، استحکام مکسن را بیشتر افزایش دهند، که در حال حاضر در بسیاری از کاربردهای فناوری پیشرفته از نانومواد دیگر پیشی گرفته است."
پژوهشگران برای تولید نانوذرات با آنتروپی بالا، سیستمی را طراحی کردند که از فلزات انتقالی اولیه – آن­هایی که در گروه­ های سه تا شش جدول تناوبی هستند - استفاده می­کند تا ترکیبات کاربید پیش­ساز و آنتروپی بالا ، به نام فازهای مکس را ایجاد کند. سپس پیش ماده در اسید قرار گرفت تا لایه ­های آلومینیوم به طور انتخابی حل شود و پژوهشگران از روش­ های مختلفی از جمله پراش اشعه ایکس، طیف سنجی فوتوالکترون و میکروسکوپ الکترونی استفاده کردند تا تأیید کنند که این چهار عنصر در داخل مواد دوبعدی باقی مانده ­اند؛ بنابراین کاربید دوبعدی آنتروپی بالای چهار عنصری برای اولین بار ساخته شد.
Subramanian Sankaranarayanan نویسنده همکار و رهبر گروه تئوری و مدل­سازی در آزمایشگاه ملی Argonne و دانشیار دانشگاه Illinois شیکاگو، گفت: "ما از ابررایانه ­های پیشرفته برای درک اینکه چرا می­توان چنین ساختارهای جدیدی را ایجاد کرد استفاده کردیم. تعداد احتمالات در این نانوذرات مکسن به قدری زیاد است که تنها ابررایانه­ ها می­توانند محاسبات مورد نیاز را انجام داده و خصوصیات شیمیایی، الکتریکی و مغناطیسی آن­ها را پیش­ بینی کنند."
مکسن‌های آنتروپی بالا ممکن است کاربردهای مختلفی داشته باشد، از جمله کاربردهای شخصی، تجاری و احتمالاً دفاع ملی. Anasori گفت: با توجه به خصوصیات دمایی بسیار بالا، این نانوذرات جدید ممکن است در آینده به عنوان بلوک ­های ساختمانی برای مواد مورد استفاده در اکتشافات فضایی یا پروازهای مافوق صوت مورد استفاده قرار گیرند که توانایی مقاومت در برابر دمای بسیار بالا را دارند. و به دلیل ویژگی­ های منحصر به فرد الکتریکی و شیمیایی، از این نانوذرات می­توان برای تولید مواد استفاده شده در محاسبات کوانتومی یا ایجاد باتری­ ها و مواد ذخیره انرژی بهتر استفاده کرد.
Kartik Nemani، دانشجوی دکتری دانشکده مهندسی و فناوری IUPUI و نخستین نویسنده این مطالعه گفت: "این­ها سرزمینی ثبت نشده است که هیچ کس هیچ چیز راجع به این زیر خانواده نانومواد نمی­دانست. ایده دانستن اینکه شما چیزی را می­دانید که هیچ کس دیگری روی این کره خاکی از آن اطلاع ندارد و اینکه از همان ابتدا بخشی از چنین پژوهش­های بنیادی باشید، یکی از بهترین احساساتی است که یک پژوهشگر می­تواند داشته باشد. و اکنون با این گسترش خانواده مکسن، امکان چگونگی استفاده از آن­ها در آینده افزایش یافته است. "
Anasori قبلاً در دانشگاه Drexel، زادگاه مکسن‌های دوبعدی بود. وی همچنین در کشف یکی دیگر از زیر خانواده­ های مکسن‌ها به نام مکسن‌های فلز انتقالی دوتایی که شامل دو عنصر مختلف در لایه­ های اتمی به شکل ساندویچ است، در سال ۲۰۱۵ نقش مهمی داشت.

گردآورندگان: دکتر آدرینه ملک خاچاطوریان- مهندس ریحانه گودرزی
منبع:
https://nano-magazine.com/news/۲۰۲۱/۷/۲۰/newly-discovered-high-entropy-mxenes-have-high-tech-applications